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Tutorial Outline
 Part I: Problems and Data Types
 Dense, sparse, and asymmetric data
 Bounded nearest neighbor search
 Nearest neighbor graph construction
 Classical approaches and limitations

 Part II: Neighbors in Genomics, 
Proteomics, and Bioinformatics
 Mass spectrometry search
 Microbiome analysis

 Part III: Approximate Search
 Locality sensitive hashing variants
 Permutation and graph-based search
 Maximum inner product search

 Part IV: Neighbors in Advertising and 
Recommender Systems
 Collaborative filtering at scale
 Learning models based on the neighborhood 

structure

 Part V: Filtering-Based Search
 Massive search space pruning by partial 

indexing
 Effective proximity bounds and when they 

are most useful

 Part VI: Neighbors in Learning and 
Mining Problems in Graph Data
 Neighborhood as cluster in a complex 

network system
 Neighborhood as influence trigger set
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Neighborhood in graphs
• Node neighborhood computation is key-enabling in a 

variety of graph mining problems
• Centrality
• Clustering
• Community search, detection, evolution
• Link prediction 
• Information diffusion
• Influence propagation
• Representation learning



Neighborhood in graphs
Covered in this part of the tutorial
• Neighborhood as cluster in a complex network system

• Consensus multilayer community detection from an ensemble of 
community structures

• Node-centric (or local) multilayer community detection 
• Neighborhood as influence trigger set

• Community-based (targeted) influence maximization
• Topology-driven diversity-based (targeted) influence maximization



NEIGHBORHOOD AS CLUSTER IN A
COMPLEX NETWORK SYSTEM
Consensus multilayer community detection from an ensemble of 
community structures



Main references for this part
The 2017 European Conference on Machine Learning 

& Principles and Practice of Knowledge Discovery in 
Databases

A. Tagarelli, A. Amelio, F. Gullo:
Ensemble-based community detection in multilayer networks. 
Data Min. Knowl. Discov. 31(5): 1506-1543 (2017)

D. Mandaglio, A. Amelio, A. Tagarelli:
Consensus Community Detection in Multilayer Networks using 
Parameter-free Graph Pruning. In Proc. PAKDD Conf. (2018)



Preamble:  Ensemble Clustering



Preamble: Multilayer Network model

Multilayer network model
• All of the layers share the same population (set of 

entities) 
• Each layer models a different entity relation 
• Each entity participates in at least one layer
• Multiplex constraint: Inter-layer couplings connect nodes

corresponding to the same entity

Different relations can occur among the same individuals, in 
different contexts
• Multiple accounts across different online social networks
• Online/offline relationships among the same group of 

individuals (e.g., followship, like/comment interactions, 
working together, having lunch) to model complex behaviors



Motivations
• Core problem in CD: to identify the “best” method and its 

configuration for a target application domain
• Many real-world network systems are complex

• communities can have very different structure and meanings depending 
on the node relation and/or the dimension/view

• Key idea: 
• Model multiple community structures for the same graph to infer robust, high-

quality consensus results
• Not really novel but still largely unexplored

• Exploit multilayer network model to retain richer/more diverse info than both 
separate and flattened representations 



Early work on consensus community detection
Given a weighted graph G, a selected community detection algorithm A, a 
desired number of clusterings np, and a real-valued threshold θ
1. Apply A on G np times to obtain np clusterings
2. Build the co-association matrix M (without any constraint on node linkage) 

and threshold it using θ
3. Apply A on M np times
4. If the obtained clusterings are all equal then STOP, else go back to Step 2

Lancichinetti, A., Fortunato, S.: Consensus clustering in complex networks. Sci. Rep. 2, 336 (2012) 



Consensus community detection as optimization problem
• First well-principled formulation of the ensemble-based 

community detection problem, under multilayer network 
model

• Aggregation accounts for intra-community and inter-
community connectivity, besides node membership

• Consensus function is optimized via multilayer modularity
analysis

• Consensus solution is discovered from a space of candidates 
delimited by two community structures representative of the 
ensemble

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Highlights (1/2)

• Two baseline methods using co-association-based consensus 
clustering
• community structure as topological upper-bound and topological 

lower-bound, resp., of the input multilayer network 

• New problem of modularity-optimization-driven ensemble-
based multilayer community detection (M-EMCD) 
• Consensus solution with maximum modularity 
• Search space of community structures that are 

• valid w.r.t. the input ensemble, 
• and topologically bounded by the baseline solutions

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Highlights (2/2)

• Hill-climbing method for the M-EMCD problem
• Linear in the number of multilayer edges

• Experimental evaluation based on
• 7 real-world multilayer networks + mLFR benchmark
• multilayer modularity, multilayer silhouette, redundancy, NMI
• 7 state-of-the-art ML-CD methods

• M-EMCD consensus solution has far better multilayer modularity and 
quality of community memberships w.r.t. the ensemble-based baseline 
methods and competing methods

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Ensemble-based baselines

Direct cluster-induced EMCD (C-EMCD)
• Requires construction of the co-association matrix
• Subject to within-community node linkage constraint
• Pruned according to a given 
min co-association threshold θ

• Consensus community structure via projections on the θ-
thresholded matrix
• Each community corresponds to a multilayer, connected 

subgraph induced from a cluster
 Topological upper-bound consensus

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Ensemble-based baselines

Constrained cluster-induced EMCD (CC-EMCD)
• C-EMCD discards the contribution of each specific 

layer to the node co-associations

• Two topological refinements:
• a consensus community is comprised only of edges from layers 

contributing to the connection of nodes 
• any two consensus communities are linked through edges that 

correspond to layers in which any two nodes do not appear in the 
co-association matrix

 Topological lower-bound consensus
A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Modularity-driven EMCD framework
• Consensus solutions by C-EMCD and CC-EMCD might be

• redundant, in terms of multilayer edges connecting different communities (C-
EMCD)

• poorly descriptive, in terms of multilayer edges that characterize their internal 
connectivity of communities (CC-EMCD)

• Idea: Find modularity-optimal consensus over the search space
delimited by CC-EMCD and C-EMCD solutions

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Multilayer modularity (1/2)

total multilayer degree 

internal degree

resolution

set of valid layer-pairings

inter-layer coupling

0/1

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Multilayer modularity (2/2)
• Goals

• Overcome issues in multislice modularity
• Provide principled definitions for the resolution and 

inter-layer coupling factors
• Manage modularity in time-evolving networks

• Main contributions
• Exploit structure at graph and community level
• Redundancy-based resolution factor

• specifically for any given pair of layer and community
• Projective-based inter-layer coupling factor

• accounts for properties of a community projection over 
any two comparable layers

• Partial order relation over the layers

A. Amelio, A. Tagarelli
Revisiting Resolution and Inter-Layer 
Coupling Factors in Modularity for 
Multilayer Networks. 
In Proc. ASONAM 2017

A. Amelio, G. Mangioni, A. Tagarelli
Modularity in Multilayer Networks 
using Redundancy-based Resolution 
and Projection-based Inter-Layer 
Coupling. 
IEEE Trans. Netw. Sci. Eng. (2019)



The M-EMCD algorithm

A. Tagarelli et al.  Ensemble-based community detection in multilayer
networks.  Data Min. Knowl. Discov. (2017)



• Seven real-world multilayer network datasets

• Brodka’s mLFR to create multilayer network with 1M nodes
• Used for efficiency evaluation
• Parameter setting:

• 10 layers
• average degree 30, maximum degree 100
• mixing at 20%
• layer mixing 2

Experimental evaluation
Datasets

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



1 D. LaSalle and G. Karypis, "Multi-threaded modularity based graph clustering using the multilevel paradigm", J. Parallel Distrib. Comput., 76:66–80, 2015.
2  L. Tang, X. Wang, and H. Liu, “Uncovering groups via heterogeneous interaction analysis,” in Proc. ICDM, 2009, pp. 503–512.
3 M. Berlingerio, F. Pinelli, and F. Calabrese, "ABACUS: frequent pattern mining-based community discovery in multidimensional networks", Data Min. Knowl. Discov., 27(3):294– 320, 2013. 
4 P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, and J.-P. Onnela, “Community structure in time-dependent, multiscale, and multiplex networks,” Science, vol. 328, no. 5980, pp. 876–878, 
2010. 
5 Z. Kuncheva and G. Montana, “Community detection in multiplex networks using locally adaptive random walks,” in Proc. ASONAM, 2015, pp. 1308–1315.
6 M. De Domenico, A. Lancichinetti, A. Arenas, and M. Rosvall, "Identifying Modular Flows on Multilayer Networks Reveals HighlynOverlapping Organization in Interconnected Systems", Phys. 
Rev. X, 5, 011027, 2015. 
7 A. Amelio and C. Pizzuti, "A Cooperative Evolutionary Approach to Learn Communities in Multilayer Networks", In Proc. PSSN, pages  222–232, 2014. 
8 A. Amelio and C. Pizzuti, "Community detection in multidimensional networks", In Proc. ICTAI, pages 352–359, 2014. 

Experimental evaluation
Competing methods
• Flattening approach

• Nerstrand (1)

• Aggregation approach
• Principal Modularity Maximization (PMM) (2)

• frequent pAttern mining-BAsed Community discoverer in mUltidimensional networkS
(ABACUS) (3)

• Direct approach
• Generalized Louvain (GL) (4), Locally Adaptive Random Transitions (LART) (5), Multiplex-

Infomap (6), MultiGA (7), MultiMOGA (8)



Experimental evaluation
Assessment criteria
• Redundancy

• "redundant" connections, i.e., pairs of nodes connected 
through edges of different layers

• Silhouette – extension to multilayer networks
• the distance computation terms are linearly combined over all 

layers
• the distance between two nodes as one minus the Jaccard 

coefficient defined over the layer-specific sets of neighbors
• NMI (2 definitions)

• vs. the solution obtained by Nerstrand on the flattened 
multilayer graph 

• vs. the layer-specific community structures

Strehl, JMLR 2003; Dhillon, KDD 2004

Berlingerio et al., ASONAM 2011

Amelio, Tagarelli, CompleNet 2018



(a) (b)
Time performance of M-EMCD on (a) EU-Air and (b) mLFR-1M 

• Layer graphs ordered by increasing size
• Several subsets by grouping the layer graphs according to their 

size order
• For every subset, the ensemble corresponded to the community 

structures of the layer graphs belonging to the subset

Efficiency of M-EMCD

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Modularity avg. gains:
0.63 vs. LART, 
0.60 vs. PMMk, 
0.36 vs. Infomap, 
0.32 vs. GL, 
0.30 vs PMM, 
0.27 vs. MultiMOGA, 
0.23 vs. Nerstrand, 
0.17 vs. MultiGA, 
and 0.07 vs. ABACUS.

M-EMCD Gains vs. competing methods 

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Silhouette avg. gains:
0.48 vs. Multiplex-Infomap, 
0.37 vs. MultiMOGA,
0.36 vs. PMM, 
0.29 vs. LART, 
0.23 vs. MultiGA, 
0.12 vs. PMMk, 
0.11 vs. GL, 
0.05 vs. ABACUS, 
and 0.04 vs. Nerstrand.

M-EMCD Gains vs. competing methods 

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Coupling modularity, silhouette 
and redundancy results:
M-EMCD can utilize less 
information from the various 
layers than other methods to 
obtain higher quality consensus 
community structures

Global redundancy:
• higher than ABACUS and 

LART
• lower than the other 

methods

M-EMCD Gains vs. competing methods 

A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Summary of findings
• M-EMCD outperforms CC-EMCD and C-EMCD methods

• in terms of modularity as well as silhouette of community membership
• redundancy comparable to C-EMCD

• M-EMCD is relatively robust against
• presence of disconnected components in a multilayer graph

• small number of singleton communities in the consensus solutions
• perturbations in the input ensemble (size of clusterings)

• M-EMCD scales well with the size of a multilayer network
• Linear cost in the number of edges

• M-EMCD outperforms competing methods
• in terms of modularity as well as silhouette of community membership
• tends to use less multilayer information
A. Tagarelli et al.  Ensemble-based community detection in multilayer networks. Data Min. Knowl. Discov. (2017)



Parameter-free graph pruning
Enhanced M-EMCD



Limitations of EMCD
• The co-association matrix filtering relies on a user-

specified threshold (θ)
• Guessing best θ is network-dependent
• θ-based pruning discards properties related to node distributions

• “Static” community membership of nodes during 
modularity optimization in M-EMCD

D. Mandaglio, A. Amelio, A. Tagarelli. Consensus Community Detection in Multilayer Networks using Parameter-free Graph Pruning. In Proc. PAKDD 2018



Solutions for enhanced EMCD
• Parameter-free identification of consensus clusters based on 

generative models for graph pruning
• Goal: filter out noisy edges from the EMCD co-association matrix
• Key aspects: 

• No requirements for any user-specified parameter
• Edge-removal decision is taken according to statistical significance (based on node 

degree/strength distributions) 

• 3-stage M-EMCD iterative scheme
• Intra-community connectivity refinement
• Community partitioning 
• Inter-community connectivity refinement with relocation of nodes to 

neighboring communities

D. Mandaglio, A. Amelio, A. Tagarelli. Consensus Community Detection in Multilayer Networks using Parameter-free Graph Pruning. In Proc. PAKDD 2018



Generative models for graph pruning (1/2)

General scheme
Given a weighted undirected graph:
1. Define a null model based on node 

distribution properties
2. Compute a p-value for every edge 

• to determine the statistical significance of properties 
assigned to edges from a given distribution

3. Filter out all edges having p-value above a 
chosen significance level

• i.e., keep all edges that are least likely to have 
occurred due to random chance

Dianati, N.: Unwinding the hairball graph: 
Pruning algorithms for weighted complex 
networks. Physical Review E 93, 012304 
(2016)

Radicchi, F., Ramasco, J.J., 
Fortunato, S.: Information filtering in 
complex weighted networks. Physical 
Review E 83, 046101 (2011)

Gemmetto, V., Cardillo, A., 
Garlaschelli, D.: Irreducible network 
backbones: unbiased graph filtering 
via maximum entropy. arXiv (June 
2017)



Parameter-free co-association filtering (1/2)

• θ-based pruning 
• too low values may lead to few, large 

communities, while too high values may lead to 
many, small communities

• Iterative search for the best-performing θ does 
not scale

Example:
• θ δ 1/3 

C1={1,..,8}, C2={9,10,11}
• 1/3 < θ δ 2/3 

C1={1,..,4}, C2={5,..,8}, C3={9}, C4={10}, C5={11}
• θ > 2/3 

C1={1, 2, 3}, C2={5,7}, plus 5 singleton communities

D. Mandaglio, A. Amelio, A. Tagarelli. Consensus Community Detection in Multilayer Networks using Parameter-free Graph Pruning. In Proc. PAKDD 2018



Parameter-free co-association filtering (2/2)

• Can we account for the multilayer network topology to 
evaluate the significance of the co-associations?
• low value of co-association: may correspond to node relations 

pertinent to some of the layers  meaningful?
• high value of co-association: may correspond to the linkage of high-

degree nodes co-occurring in the same community in many layers 
 superfluous?

• Idea: evaluate a generative model for graph pruning over 
the weighted co-association graph

D. Mandaglio, A. Amelio, A. Tagarelli. Consensus Community Detection in Multilayer Networks using Parameter-free Graph Pruning. In Proc. PAKDD 2018



Parameter-free co-association filtering
Co-association hypothesis testing
• Let WGP be a statistical inference method whose 

generative null model is param. w.r.t. node 
degree/strength distributions in the co-association graph

• Co-association hypothesis testing based on WGP:
• Null hypothesis (H0): observed edge weight generated by chance 
• p-value: prob. that the null model produces a weight ≥ the observed 

weight

• If the p-value is lower than α, then H0 can be rejected
 the co-association is statist. meaningful

D. Mandaglio, A. Amelio, A. Tagarelli. Consensus Community Detection in Multilayer Networks using Parameter-free Graph Pruning. In Proc. PAKDD 2018



Enhanced M-EMCD (1/2)

1. Incorporates parameter-free pruning of co-associations
• Prior to generation of lower-bound consensus (i.e., CC-EMCD 

solution)

2. Dynamically adjusts memberships during the consensus
optimization – 3 stages

(i) refinement of connectivity internal to a selected community
(ii) refinement of connectivity between the community and its 
neighbors, with relocation of nodes
(iii) partitioning of the community

D. Mandaglio, A. Amelio, A. Tagarelli. Consensus Community Detection in Multilayer Networks using Parameter-free Graph Pruning. In Proc. PAKDD 2018



Enhanced M-EMCD:  M-EMCD* (2/2)

D. Mandaglio, A. Amelio, A. Tagarelli. Consensus Community Detection in Multilayer Networks using Parameter-free Graph Pruning. In Proc. PAKDD 2018



Enhanced M-EMCD Gains vs. competing methods
Direct: 

• GL (Mucha et al. 2010)
• M-Infomap (De Domenico et al. 2015)

Aggregate: 
• PMM (Tang et al. 2009)

• Varying no. of communities 
• Consensus-clustering (ConClus)

(Lancichinetti & Fortunato, 2012)
• Nerstrand for generating the 

clustering solutions
• np set to the no. of layers
• Selection of θ corresponding to the 

largest NMI w.r.t. the initial
clusterings

D. Mandaglio, A. Amelio, A. Tagarelli. Consensus Community Detection in Multilayer Networks using Parameter-free Graph Pruning. In Proc. PAKDD 2018



NEIGHBORHOOD AS CLUSTER IN A
COMPLEX NETWORK SYSTEM
Node-centric (or local) multilayer community detection



Main references for this part
The 2017 European Conference on Machine Learning 

& Principles and Practice of Knowledge Discovery in 
Databases

R. Interdonato, A. Tagarelli, D. Ienco, A. Sallaberry, P. Poncelet
Local community detection in multilayer networks. 
Data Min. Knowl. Discov. 31(5): 1444-1479 (2017)

R. Interdonato, A. Tagarelli
Personalized Recommendation of Points-of-Interest based on 
Multilayer Local Community Detection
In Proc. SocInfo 2017



Conventional Community Detection:  a  global 
optimization problem -- it requires knowledge on the 
whole network structure

LCD is a different problem: finding a relatively 
expanded neighborhood of a single node which 
forms a densely connected, small subgraph
• e.g., personalized network of social contacts of 

interest to a single (or few) user only  

Minimal requirements of memory-footprint

Key-enabling for dynamic network analysis

Useful to cope with privacy and access restriction 
issues

GOAL:  Given limited information 
about the network, 

to identify a community which is 
centered on one (or few) seed 

nodes

Local community detection (1/2)



General approach (Clauset et al. 2005, 
Chen et al. 2009, Branting 2012, Fagnan
et al. 2014): 
• accounting for the relative ratio of 

internal edges and external edges 
• penalizing candidates in proportion to 

the amount of links to non-community 
nodes

c
f

g

a

e

b

d

C ={a,b,c,d}
S = {f,g,e}
B = {b,c,d}

Community (C): the local community under 
construction
Shell set (S): the set of neighbors of nodes in C
that do not belong to C
Boundary set (B): subset of C comprised of 
nodes having neighbors in S

Local community detection (2/2)



The ML-LCD problem

R. Interdonato et al.  Local community detection in multilayer networks. Data Min. Knowl. Discov.  (2017)



• Exploits layer relevance weighting 
scheme

• Simple linear combination over 
layers

ML-LCD-lw

Layer-weighting-based local community functions

R. Interdonato et al.  Local community detection in multilayer networks. Data Min. Knowl. Discov.  (2017)



Within-layer similarity-based local community functions

• Relies on a notion of similarity of 
nodes

• Any similarity measure that can 
express the topological affinity of 
two nodes in a graph 

• Jaccard sim: 
• cosine sim
• 3-clique based measures
• (Node embeddings)

• Similarity between any two nodes 
is determined by focusing on 
each layer at a time

ML-LCD-wlsim

R. Interdonato et al.  Local community detection in multilayer networks. Data Min. Knowl. Discov.  (2017)



Cross-layer similarity-based local community functions

• Topologyless approach
• Similarities are computed 

among all nodes in set B and 
set S, regardless of node 
relations

• Captures ties between two nodes 
that can still be significant even 
without the presence of an 
explicit edge in the network

Local Community Detection in Multilayer Networks

ML-LCD-clsim

R. Interdonato et al.  Local community detection in multilayer networks. Data Min. Knowl. Discov.  (2017)



Local Community Detection in Multilayer Networks

Cross-layer similarity-based local community functions

c
f

g

a

e

b

d

C = a,b,c,d
S = f,g,e
B = b,c,d

wl-sim:
sim(b,f)
sim(b,g)
sim(c,g)
sim(c,e)
sim(d,e)

R. Interdonato et al.  Local community detection in multilayer networks. Data Min. Knowl. Discov.  (2017)



Local Community Detection in Multilayer Networks

Cross-layer similarity-based local community functions

c
f

g

a

e

b

d

C = a,b,c,d
S = f,g,e
B = b,c,d

cl-sim:
sim(b,f)
sim(b,g)
sim(c,g)
sim(c,e)
sim(d,e)
sim(b,e)
sim(c,f)
sim(d,f)
sim(d,g)

R. Interdonato et al.  Local community detection in multilayer networks. Data Min. Knowl. Discov.  (2017)



R. Interdonato et al.  Local community detection in multilayer networks. Data Min. Knowl. Discov.  (2017)



Evaluation goals
• Evaluation of ML-LCD methods

• Size of extracted LCs
• Structural characteristics of LCs
• Similarity between LCs
• Distribution of layers involved in LCs
• LC distribution over number of edges
• Overlap of LCs 
• Efficiency analysis

• Comparison with single-layer, local community detection:
• LCD (Chen et al. 2009), Lemon (Li et al. 2015)

• Comparison with multi-layer, global community detection:
• PMM (Tang et al. 2009), GL (Mucha et al. 2010),  LART (Kuncheva and 

Montana 2015)
R. Interdonato et al.  Local community detection in multilayer networks. Data Min. Knowl. Discov.  (2017)



Summary of evaluation of ML-LCD methods
• ML-LCD-lw, then ML-LCD-clsim, produce larger communities

• Ordering by “xenophobic” level:  
ML-LCD-lw <  ML-LCD-clsim <  ML-LCD-wlsim

• All methods are able to produce small-world communities
• ML-LCD-wlsim and ML-LCD-clsim behave fairly similarly (Jaccard sim of LCs)

• cos similarity and triad-based similarity more inclusive behavior than jac
similarity

• LCs of ML-LCD-lw and ML-LCD-clsim cover all or most of the layers
• Relatively low overlap (at node level) among LCs produced by every method
• ML-LCD-wlsim is the most efficient method

R. Interdonato et al.  Local community detection in multilayer networks. Data Min. Knowl. Discov.  (2017)



NEIGHBORHOOD AS
INFLUENCE TRIGGER SET
Topology-driven diversity-based (targeted) influence maximization



Main references for this part

A. Caliò, R. Interdonato, C. Pulice, A. Tagarelli:
Topology-Driven Diversity for Targeted Influence Maximization 
with Application to User Engagement in Social Networks. 
IEEE Trans. Knowl. Data Eng.. 30(!2): 2421-2434 (2018)



Social networks and spread of influence
• Social influence

• A causal process:  individual u exerts a ”force” on individual v to 
introduce a change of the behavior of v

• Assumes existence of (online) connections and consequent 
interactions between individuals in a graph network

• “Word-of-mouth” effect
• If one convinces a social contact to adopt an 

idea/opinion/product, then the persuaded 
individual will endorse the idea/opinion/product 
among her friends



Influence Maximization at a glance –
General setting
• Given 

• a limited budget k for initial advertising
• Estimates of influence between individuals

• Problem
• Select a set S of k individuals, or seeds, s.t., by “activating” them, the 

expected spread of influence (starting from S) is maximized
• Operational goal

• Choose a diffusion model, Trigger a large cascade of influence, i.e., 
further adoptions of a product/info/idea

• Applications
• Viral marketing, epidemics, recommendation, trust propagation, etc.

D. Kempe, J. M. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proc. ACM KDD 2003



Targeted Influence Maximization
• Focus on a selection of individuals (rather than the entire 

social network) through which the spread of influence 
• e.g., an organization often wants to narrow the advertisement of its 

products to users having certain needs or preferences, as opposed 
to targeting the whole crowd

• e.g., in an OSN scenario, some events or memes would be of 
interest only to users with certain tastes or social profiles



Leveraging diversity for enhanced IM
• Diversity as a key-enabling dimension in data analysis

• to enhance productivity, 
• to develop wiser crowdsourcing processes,
• to improve user satisfaction in content recommendation based on 

novelty and serendipity, 
• to avoid “information bubble” effects, and 
• to handle legal and ethical implications in information processing



Leveraging diversity for enhanced IM
• The success of an IM task might depend not only on the size of 

the seed set, 
• but also on the diversity that is reflected within, or in relation to, 

the seed set
• Diverse individuals tend to connect to others with many different 

characteristics
• Personal profile, e.g., topical preferences
• Community role(s)
• Strategic location

How does this relates to the ability of targeting individuals?



Community-based targeted IM
• Different constraints to select community-aware portions of 

the diffusion graph:
• The community graph (C)
• The weakly-knit expanded community

• {C, C’, C’’}
• The tightly-knit expanded community

• {C, C’}
• The D-recursively expanded community

• {C, C’, C’’}
• {C, C’}

t

C

C’ C’’

C’’’
target

R. Interdonato, C. Pulice, A. Tagarelli. Community-based delurking in social networks.  In Proc.  IEEE/ACM ASONAM 2016



Community-based targeted IM
• RQ: Are the target users activated from seed users that 

belong to the same community, or to external communities?

• The best seeds are more likely to be identified among 
members of communities external to that of the targets
• Such external communities are actually adjacent (or distant few hops)  

to the community containing the targets, linked through bridges
• By expanding the diffusion context (i.e., the community 

subgraph), it is more likely to engage targets having high 
activation probability

R. Interdonato, C. Pulice, A. Tagarelli. Community-based delurking in social networks.  In Proc.  IEEE/ACM ASONAM 2016



Diversity: “diverse” notions
• Common (more intuitive) notions would rely on side-

information or a-priori knowledge on user attributes
• Little research on that

• Tang et al. 2014 
• consider side-information-based diversity assuming numerical  

representation of node attributes, given a predetermined set of types
• a linear combination of the expected spread function and a numerical 

attribute-based diversity has to be maximized by means on heuristic 
search strategies, defined upon classic centrality measures

F. Tang, Q. Liu, H. Zhu, E. Chen, and F. Zhu. Diversified social influence maximization. In Proc. IEEE/ACM ASONAM 2014



Diversity: “diverse” notions
• Different perspective adopted in Caliò et al. 2018:

a user’s diversity in a social graph can be determined based on 
topological properties related to her/his neighborhood

• It just requires topology information only!

• Finds justification in Social Embeddedness and Boundary 
Spanning theories
• OSN users may naturally get knowledge from some of their social 

contacts and then spread the acquired capital to other contacts, 
spanning it from one or more components of the social graph to others

A. Caliò, R. Interdonato, C. Pulice, A. Tagarelli. Topology-Driven Diversity for Targeted Influence Maximization with Application to User 
Engagement in Social Networks. IEEE TKDE (2018)



Topology-driven diversity in (targeted) IM
Main hypothesis:
• if we learn seeds that are not only capable of 

influencing but also are linked to more diverse 
(groups of) users, then we would expect that 
the influence triggers will be diversified as well

• i.e., target users will get higher chance of being activated

RQ1: How to determine diversity in an influence diffusion 
graph (having no a-priori knowledge on user attributes)?

RQ2: How to learn the seeds by also considering diversity 
w.r.t. a target set?

A. Caliò, R. Interdonato, C. Pulice, A. Tagarelli. Topology-Driven Diversity for Targeted Influence Maximization with Application to User 
Engagement in Social Networks. IEEE TKDE (2018)



Topology-driven diversity in (targeted) IM
• Two alternative ways of modeling topology-driven diversity 

• Depend on the approach adopted to exploit structural information from the 
diffusion subgraph specific to a given target node

• Local diversity:
• captures the likelihood of reaching it from nodes outside the currently unfolded 

target-specific diffusion subgraph
• computed at each step of the expansion of a target-specific diffusion subgraph

• Global diversity:
• determines the diversity of nodes that lay on the boundary of the subgraph, i.e., 

nodes that can receive influence links from nodes external to the subgraph
 boundary-spanning effect of external sources of influence

• exploits the structure of the fully unfolded target-specific diffusion subgraph

A. Caliò, R. Interdonato, C. Pulice, A. Tagarelli. Topology-Driven Diversity for Targeted Influence Maximization with Application to User 
Engagement in Social Networks. IEEE TKDE (2018)



Topology-driven diversity in (targeted) IM
Basic definitions
• Social graph:  
• Diffusion graph: 

• With     edge-weighting function and      node-weighting function 

• Target-specific diffusion subgraph:  
• a DAG rooted in the target node t corresponding to the portion of  involved 

in the diffusion towards t at time 
• Boundary set        : nodes having at least one incoming connection 

from nodes in      outside
• Expansion of         : the graph           resulting from the reverse 

unfolding of          to contain nodes that can reach those in
• In-neighbors of               that are not linked to    in        :

A. Caliò, R. Interdonato, C. Pulice, A. Tagarelli. Topology-Driven Diversity for Targeted Influence Maximization with Application to User 
Engagement in Social Networks. IEEE TKDE (2018)



• Given the currently unfolded       and node             with 
• To determine the local diversity of any node     in           s.t.

• The diversity of    should be proportional to the likelihood of reaching it 
from nodes outside      , i.e., proportional to the number of    ’s in-
neighbors in     not already in  . 

• The diversity of    should be proportional to the increment contributed 
by that node to the number of incoming links not already included in 

Topology-driven diversity in (targeted) IM
Local diversity

A. Caliò, R. Interdonato, C. Pulice, A. Tagarelli. Topology-Driven Diversity for Targeted Influence Maximization with Application to User 
Engagement in Social Networks. IEEE TKDE (2018)



• Local diversity of    : 

• i.e., the boundary diversity conditional on inclusion of    in     :

• divided by the actual boundary diversity: 

Topology-driven diversity in (targeted) IM
Local diversity

A. Caliò, R. Interdonato, C. Pulice, A. Tagarelli. Topology-Driven Diversity for Targeted Influence Maximization with Application to User 
Engagement in Social Networks. IEEE TKDE (2018)



• is here regarded as the fully expanded diffusion graph for target t

• The boundary spanning should be regarded as exogenous to the 
diffusion process for a specific target, i.e., associated to external 
sources of influence coming from the rest of the social graph

• Boundary diversity of               :  the contribution of    to the boundary 
diversity  

Topology-driven diversity in (targeted) IM
Global diversity

A. Caliò, R. Interdonato, C. Pulice, A. Tagarelli. Topology-Driven Diversity for Targeted Influence Maximization with Application to User 
Engagement in Social Networks. IEEE TKDE (2018)



• Consider also the outward connectivity of boundary nodes:  

• To maximize diversity of nodes that propagate towards a given target, 
the diversity of a boundary node should be
• Proportional to its boundary diversity
• Proportional to its outward internal span

• Global diversity of    :

• with f smoothing function to assign the outward internal span a weight at most equal 
to the boundary diversity, i.e.,  

Topology-driven diversity in (targeted) IM
Global diversity

A. Caliò, R. Interdonato, C. Pulice, A. Tagarelli. Topology-Driven Diversity for Targeted Influence Maximization with Application to User 
Engagement in Social Networks. IEEE TKDE (2018)



• DTIM maintains the complexity of IM problems, but
• Good news:

• Both capital function and local/global diversity function are proven to be 
nondecreasing monotone and submodular

• And so is the DTIM objective function (Linear Threshold model is used)
• Therefore, a greedy algorithm can be developed with (1 – 1/e) 

approximation

• Original DTIM algorithms follow a greedy approach that exploits the 
search for shortest paths in the diffusion graph, in a backward 
fashion from the selected target set

• Also available: state-of-the-art Reverse-Influence-Sampling-based 
formulation of DTIM

Topology-driven diversity-sensitive targeted IM 
Complexity and algorithms

A. Caliò, R. Interdonato, C. Pulice, A. Tagarelli. Topology-Driven Diversity for Targeted Influence Maximization with Application to User 
Engagement in Social Networks. IEEE TKDE (2018)
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