
Are You My Neighbor? Bringing Order to
Neighbor Computing Problems.

David C. Anastasiu1,2 , Huzefa Rangwala3, and Andrea Tagarelli4
1Computer Engineering, San Jose State University, CA

1Computer Science & Engineering, Santa Clara University, CA
2Computer Science & Engineering, George Mason University, VA

3DIMES, University of Calabria, Italy

25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August 2019 1

Part V:
Filtering-Based Search
David C. Anastasiu, San José State University [david.anastasiu@sjsu.edu]

2

Starting September:
Department of Computer Science and Engineering
Santa Clara University

Tutorial Outline
 Part I: Problems and Data Types
 Dense, sparse, and asymmetric data
 Bounded nearest neighbor search
 Nearest neighbor graph construction
 Classical approaches and limitations

 Part II: Neighbors in Genomics,
Proteomics, and Bioinformatics
 Mass spectrometry search
 Microbiome analysis

 Part III: Approximate Search
 Locality sensitive hashing variants
 Permutation and graph-based search
 Maximum inner product search

 Part IV: Neighbors in Advertising and
Recommender Systems
 Collaborative filtering at scale
 Learning models based on the neighborhood

structure

 Part V: Filtering-Based Search
 Massive search space pruning by partial

indexing
 Effective proximity bounds and when they

are most useful

 Part VI: Neighbors in Learning and
Mining Problems in Graph Data
 Neighborhood as cluster in a complex

network system
 Neighborhood as influence trigger set

3

Talk Outline
• What is filtering-based search?
• Massive search space pruning by partial indexing [and other pruning

strategies]
• So what in the world is partial indexing?
• Search using a partial index
• The case of k-NNG construction
• Approximate methods could use filtering too
• What if we used parallelism
• When both length and angles matter

• Effective proximity bounds and when they are most useful
• Not all pruning is created equal
• When less is more

• Open questions 4

What is filtering-based search?

• Given a similarity bounding threshold, there is no need to compute the
full similarity between a pair of vectors to tell if they are similar enough

• Compute an upper bound similarity estimate
• Prune/filter the pair if the similarity estimate is below the threshold

5

How to prune the search space

6

All Pairwise Similarities

Vector lengths

Sparsity

True neighbors

Vector angles

Angles & lengths

Take advantage of sparsity

7

𝑑𝑑5

𝑑𝑑4

𝑑𝑑3

𝑑𝑑2

𝑑𝑑1

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Input matrix

Index and Accumulator: a match made in heaven

• Inverted index: set of lists, one for each feature, containing
documents and their associated values

8

𝑑𝑑5 𝑑𝑑5

𝑑𝑑5 𝑑𝑑4 𝑑𝑑4 𝑑𝑑5 𝑑𝑑4

𝑑𝑑3 𝑑𝑑3 𝑑𝑑2 𝑑𝑑3 𝑑𝑑2

𝑑𝑑2 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Inverted Index

𝑓𝑓1 𝑓𝑓2 𝑓𝑓5𝑑𝑑3

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5

Accumulator

𝐴𝐴 𝑑𝑑2 += 𝑑𝑑3,1 × 𝑑𝑑2,1
𝐴𝐴 𝑑𝑑5 += 𝑑𝑑3,1 × 𝑑𝑑5,1
𝐴𝐴 𝑑𝑑1 += 𝑑𝑑3,2 × 𝑑𝑑1,2
𝐴𝐴 𝑑𝑑4 += 𝑑𝑑3,2 × 𝑑𝑑4,2
𝐴𝐴 𝑑𝑑5 += 𝑑𝑑3,2 × 𝑑𝑑5,2

[…]

IdxJoin: A straight-forward solution
• Method:

Compute and store vector norms
Construct an inverted index from the objects
For each query object:
• Compare only with objects with features in common
• Select neighbors

• Results in EXACT solution
• Advantage:

• Skips some object comparisons and many meaningless multiply-
adds

9

Datasets

10

The sparsity advantage: IndexJoin vs. 𝑛𝑛2/2

11

• A large number of comparisons are filtered by the sparsity constraints
• For Orkut and Wiki, 99% or more of the comparisons are simply ignored

LSH vs. IndexJoin

12

• In all experiments, LSH parameters were tuned to achieve at least 95% accuracy.
• LSH outperforms IndexJoin at high thresholds.
• Performs poorly at low thresholds and for high dimensional datasets (Orkut, Wiki).

A prelude: prefix and suffix vectors

13

.27 .72 .64
p

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

.27

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

p

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6
.72 .64

p

Main idea:
Only need to index enough non-zeros to guarantee correct result.

• We’ll focus initially on the min-𝜖𝜖 graph construction problem.

So what in the world is partial indexing?

14

𝑑𝑑5 𝑑𝑑4

𝑑𝑑3 𝑑𝑑3

𝑑𝑑2 𝑑𝑑1 𝑑𝑑2

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Inverted Index𝑑𝑑5

𝑑𝑑4

𝑑𝑑3

𝑑𝑑2

𝑑𝑑1
𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Input matrix

𝒅𝒅1≥4 2 < 𝜖𝜖

Partial indexing in practice
• L2AP indexes fewer non-zeros than previous approaches

• Leads to greatly improved execution runtime

15

L2AP follows a two-step process:
1. Accumulate similarity using partial inverted index

2. For each un-pruned object, finish similarity computation using
forward index
• Only need to compute a subset of similarities:
• Can do further filtering

Search using a partial index

16

Forward
index

Inverted
index

-1 -1 .25 -1 .54

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5

Accumulator

http://davidanastasiu.net/software/l2ap/

http://davidanastasiu.net/software/l2ap/

Angle/Suffix Filtering
Filter/prune object pairs not in final graph based on
similarity estimates

Filter sim(𝑑𝑑𝑞𝑞 ,𝑑𝑑𝑐𝑐) if
17

(Cauchy-Schwarz inequality)

𝐴𝐴[𝑑𝑑𝑐𝑐]

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6
p

* *

*

Angle/Suffix Filtering
Filter/prune object pairs not in final graph based on
similarity estimates

Filter sim(𝑑𝑑𝑞𝑞 ,𝑑𝑑𝑐𝑐) if

18

𝐴𝐴[𝑑𝑑𝑐𝑐]

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6
p

* *

*

But won’t it take longer to compute those norms?

• We pre-compute all necessary norms and store them in a compressed
sparse row (CSR) –like data structure

• O(nnz) time and space for this step

19

.65 .44 .44 .44

.67 .33 .67

.72 .49 .49

.27 .72 .64

.75 .25 .25 .50 .25

.65 .44 .44 .44.67 .33 .67.72 .49 .49.27 .72 .64.75 .25 .25 .50 .25rowval

0 1 3 41 3 50 1 40 3 51 2 3 4 5rowind

180 5 8 11 14rowptr

.76 .62 .44 .00.75 .67 .00.69 .49 .00.96 .64 .00.66 .61 .56 .25 .00l2norm Same idea for

Filtering in practice

20

• L2AP filters most objects without computing their similarity

Mean % accumulated non-zeros

How fast is it?

21

• L2AP outperforms all exact and most approximate baselines

The case of k-NNG construction

• Build an initial approximate graph �𝐺𝐺
• Provides thresholds for filtering

• Improve �𝐺𝐺 until exact
• Search for objects that can improve neighborhoods

22

• In the k-NN problem, we don’t have a nice global minimum similarity
threshold we can use for filtering

• It exists, but
• (1) we don’t know it
• (2) it is likely too low to make a difference

• We can use local incomplete (approximate) neighborhood thresholds
• L2Knng strategy:

http://davidanastasiu.net/software/l2knng/

http://davidanastasiu.net/software/l2knng/

Step 1: Approximate graph construction

a) Heuristically choose candidates likely to succeed
• Find an initial neighborhood for each object

• This step results in an initial approximate graph
23

𝑑𝑑3 𝑓𝑓1 .72 𝑓𝑓2 .49 𝑓𝑓5 .49

• Sort vectors and inverted lists in non-increasing weight order
• Traverse inverted lists and gather 𝜇𝜇 ≥ 𝑘𝑘 candidates

𝐶𝐶𝜇𝜇=3 = 𝑑𝑑5,𝑑𝑑1,𝑑𝑑4

• Compute similarities with candidates and keep the 𝑘𝑘 nearest
neighbors

𝑑𝑑3 .72 𝑑𝑑5 .65 𝑑𝑑2 .27𝑓𝑓1

𝑑𝑑1 .75 𝑑𝑑4 .67 𝑑𝑑5 .44𝑓𝑓2 𝑑𝑑3 .49

𝑓𝑓3 𝑑𝑑1 .25

𝑑𝑑2 .72 𝑑𝑑5 .44𝑓𝑓4 𝑑𝑑4 .34 𝑑𝑑1 .25

𝑓𝑓5 𝑑𝑑1 .50 𝑑𝑑3 .49 𝑑𝑑5 .44

𝑓𝑓6 𝑑𝑑4 .67 𝑑𝑑2 .64 𝑑𝑑1 .25

Step 1: Approximate graph construction

b) Improve initial approximate graph

• Find potential better neighbors for each object (𝛾𝛾
times)

• Visit neighbors in non-increasing similarity order
• Consider 𝑑𝑑𝑠𝑠, a neighbor of 𝑑𝑑𝑟𝑟, as a candidate if:

• Have collected less than 𝜇𝜇 candidates
• 𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑠𝑠,𝑑𝑑𝑟𝑟) ≥ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑟𝑟 ,𝑑𝑑𝑞𝑞)

• Compute similarities with candidates and update
both neighborhoods of 𝑑𝑑𝑠𝑠 and 𝑑𝑑𝑞𝑞

24

𝐶𝐶𝜇𝜇=3(𝑑𝑑1) = 𝑑𝑑6,𝑑𝑑3,𝑑𝑑4

How important is Step 1?

25

Influence of initial
graph quality
toward exact
graph construction

Step 2: Filtering

• For each query object 𝑑𝑑𝑞𝑞,
• Find previously processed objects such that:

• 𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑐𝑐 ,𝑑𝑑𝑞𝑞) > σ𝑑𝑑𝑞𝑞: can improve query obj. neighborhood
• 𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑐𝑐 ,𝑑𝑑𝑞𝑞) > σ𝑑𝑑𝑐𝑐: can improve neighborhood of previously processed objects

• Verify list of candidate objects:
• prune object pair as soon as possible
• else update neighborhoods of both objects

• Index processed query object

• Caveats
• Neighborhoods stored in max-heaps
• Index tiling used to improve neighborhoods quicker

26

How well does the filtering work?

27

Number of candidates pruned in different
stages of the filtering framework

How fast is it?

28

Approximate Baselines Exact Baselines

Approximate methods could use filtering too
• CANN applies the ideas in L2AP and L2Knng-a to the approximate

min-𝜖𝜖 graph construction problem

• Approximate solution, in 2 steps:
1. Construct approximate min-𝜖𝜖 𝑘𝑘-NN graph 𝒢𝒢

1) Heuristically choose objects that area likely neighbors:
a. Build partial inverted index for min-𝜖𝜖 search
b. Sort query vectors and partial inverted index in decreasing order
c. Choose objects with high weights in common

2. Use 𝒢𝒢 to construct final min-𝜖𝜖 NN graph
1) Zero or more graph improvement steps

a. Chose candidates among the neighbors of my neighbors that have
higher similarity with my neighbor than me and my neighbor do 29

Filtering helps improve efficiency

30estimatecompute

• L2-Norm bound is most useful (ignore others)
• Helpful to hash the query vector (e.g., make it dense)

Bounded similarity computation with pruning:

How fast is it?

31Recall = 0.9

What if we used parallelism?

• Many processes/threads means potential contention over data
structures or output space

• Must carefully design methods that delineate independent work for the
threads while ensuring load balance

• If all threads have working data, they may overwhelm the cache and
cause delays due to cache misses

• Cache tiling and memory-efficient data structures can help reduce the cache
footprint of each thread

32

Cache tiling

33

Masked hash table

34

-1 10 11 2 -1 -14

overflow

.43 .17 .83 .31
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

3 4 12

.83 .83 .43.43

.95 1.0 .43.46

Prefix sizes

Prefix max values

Prefix lengths

Index pointers

.83 .31 .43.17 Values

h

Hash table

Data

Partial linear overflow scan during collision lookup.

traversal order

Neighborhood updates
• Local neighborhood updated during search
• Candidate neighborhood updates staged for cooperative update at

the end of query block

35

Tiling in practice

36

Percent Instructions Leading to Cache Misses (Collisions)
pL2AP – tiled index
pL2AP_rr – full inverted index

Load Balance

How fast is it?

3724 threads @ 2.5 GHz Intel Xeon E5-2680v3 \w 30 Mb Cache

When both length and angles matter

• Tanimoto min-𝜖𝜖 NNG Construction

For each object 𝑑𝑑𝑖𝑖 from a set 𝐷𝐷,
find all neighbors 𝑑𝑑𝑗𝑗 with T 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 ≥ 𝜖𝜖.

38http://davidanastasiu.net/software/tapnn/

𝒅𝒅𝒊𝒊 𝒅𝒅𝒋𝒋

Length-based filtering
• 𝑑𝑑𝑞𝑞 and 𝑑𝑑𝑐𝑐 cannot be neighbors unless

• 𝛼𝛼 bound due to Marzena Kryszkiewicz, IIDS 2013

• Relabel objects in non-decreasing length order

39

𝑑𝑑1
𝑑𝑑2
𝑑𝑑3
𝑑𝑑4
𝑑𝑑5

𝑑𝑑5 𝑑𝑑5

𝑑𝑑5 𝑑𝑑4 𝑑𝑑4 𝑑𝑑5 𝑑𝑑4

𝑑𝑑3 𝑑𝑑3 𝑑𝑑2 𝑑𝑑3 𝑑𝑑2

𝑑𝑑2 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1
𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Inverted Index

Subset of cosine neighborhood
• The following inequalities hold for our domain:

• Potential solution
• Store vector norms and normalize vectors
• Find cosine neighbors (L2AP-like filtering here)
• Transform C 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 to T 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗
• Remove non-Tanimoto neighbors

• Tighter bound due to Lee et al., DEXA 2010

40

Length + Angle-Based Pruning

• 𝑑𝑑𝑞𝑞 and 𝑑𝑑𝑐𝑐 cannot be neighbors unless

where 𝑠𝑠 is any cosine similarity upper bound
such as the ones we compute during filtering.

41

How fast is it?

42
Scales well as data set size increases.

Effective proximity bounds and
when they are most useful

What will the output look like?

And, a related question, how do I choose 𝜖𝜖/𝑘𝑘?
• Output of similarity search/graph construction is data-dependent

• For some data sets, you get no neighbors at 𝜖𝜖 = 0.95 cosine similarity; for
others, you get many neighbors

• A given 𝜖𝜖 threshold means different things in different contexts

• Number of neighbors is dependent on dimensionality
• By the pigeon hole principle, when 𝑛𝑛 ≫ 𝑠𝑠, more likely to see collisions

(features in common)

• Filtering effectiveness is dependent on stdev of feature weights
• If all features weight the same, it will take longer to accumulate similarity

• Parameter choices are often dependent on subsequent analysis that
the neighbors are sought for

44

Pruning Effectiveness Comparison

45

Cosine Tanimoto
percent pruned by partial indexingpercent pruned by partial indexing

RCV1

Neighborhood Graph Statistics

46

𝜇𝜇: Average neighborhood size
𝜌𝜌: Output graph density

Not all pruning is created equal
• Designed many filtering criteria for the min-𝜖𝜖 and 𝑘𝑘-NN problems. E.g.,

• Some of the criteria are problem-specific (L2-Norm-bound is not)
• Of all criterial, the L2-Norm bound is the most productive (by far)
• Some have suggested less pruning may be more efficient

• E.g., De Francisci Morales & Gionis, VLDB’16 (extended L2AP to streaming case)
• May be data specific, but has not been my finding so far 47

When less is more

48

• The amount of pruning is not directly proportional to efficiency

Some filtering may cover other filtering

49

Summary and Open Questions

In summary
• Creating sparsity-aware algorithms goes a long way towards efficient

solutions to hard problems
• Filtering is a very effective technique for similarity search, especially for

sparse data and asymmetric proximity measures
• L2-norm filtering is extremely effective for cosine similarity and

Tanimoto coefficient – may also be beneficial in other proximity
measures (e.g., Euclidean distance)

• More research is needed to:
• Derive new even tighter filtering bounds
• Identify optimum balance between checking and not checking bounds
• Characterize NNS pruning and output based on feature statistics

• Yuliang Li et al. (ICDT2019) prove optimality guarantees for L2-norm filtering of skewed data
• They also propose alternate and partial inverted list traversal + lower-bound filters

Questions?

References
[1] Yuliang Li, Jianguo Wang, Benjamin Pullman, Nuno Bandeira and Yannis Papakonstantinou Index-based,
High-dimensional, Cosine Threshold Querying with Optimality Guarantees. ICDT 2019.

[2] David C. Anastasiu & George Karypis. Parallel cosine nearest neighbor graph construction. Elsevier Journal of
Parallel and Distributed Computing, 2017. Impact factor: 1.815.

[3] David C. Anastasiu & George Karypis. Efficient identification of Tanimoto nearest neighbors; All Pairs Similarity
Search Using the Extended Jaccard Coefficient. Springer International Journal of Data Science and Analytics,
4(3):153-172, 2017.

[4] Gianmarco De Francisci Morales and Aristides Gionis. 2016. Streaming similarity self-join. Proc. VLDB Endow. 9,
10 (June 2016), 792-803. DOI: http://dx.doi.org/10.14778/2977797.2977805

[5] David C. Anastasiu and George Karypis. Efficient Identification of Tanimoto Nearest Neighbors. Proceedings of
the 3rd IEEE International Conference on Data Science and Advanced Analytics (DSAA 2016).

[6] David C. Anastasiu & George Karypis. Fast Parallel Cosine K-Nearest Neighbor Graph Construction. In 2016 6th
Workshop on Irregular Applications: Architecture and Algorithms (IA3) (IA3 2016), pages 50-53, 2016.

[7] David C. Anastasiu & George Karypis. PL2AP: Fast Parallel Cosine Similarity Search. In Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Algorithms, in conjunction with SC'15 (IA3 2015), pages 1-8,
ACM, 2015.

[8] David C. Anastasiu and George Karypis. L2Knng: Fast Exact K-Nearest Neighbor Graph Construction with L2-Norm
Pruning. In 24th ACM International Conference on Information and Knowledge Management, CIKM '15, 2015.

53

References
[9] David C. Anastasiu and George Karypis. L2AP: Fast Cosine Similarity Search With Prefix L-2 Norm Bounds.
Proceedings of the 30th IEEE International Conference on Data Engineering (ICDE 2014).

[10] M. Kryszkiewicz. Using non-zero dimensions and lengths of vectors for the tanimoto similarity search
among real valued vectors. Intelligent Information and Database Systems. Springer International Publishing,
2014, pp. 173-182.

[11] Youngki Park, Sungchan Park, Sang-goo Lee, and Woosung Jung. Greedy filtering: A scalable algorithm for
k-nearest neighbor graph construction. In Database Systems for Advanced Applications, volume 8421 of
Lecture Notes in Computer Science, pages 327-341. Springer-Verlag, 2014.

[12] Venu Satuluri and Srinivasan Parthasarathy. 2012. Bayesian locality sensitive hashing for fast similarity
search. Proc. VLDB Endow. 5, 5 (January 2012), 430-441.

[13] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction for generic similarity
measures. In Proceedings of the 20th International Conference on World Wide Web, WWW ’11, pages 577–
586, New York, NY, USA, 2011. ACM.

[14] Dongjoo Lee, Jaehui Park, Junho Shim, and Sang-goo Lee. 2010. An efficient similarity join algorithm with
cosine similarity predicate. In Proceedings of the 21st international conference on Database and expert
systems applications: Part II (DEXA'10), Pablo Garcia Bringas, Abdelkader Hameurlain, and Gerald Quirchmayr
(Eds.). Springer-Verlag, Berlin, Heidelberg, 422-436

[15] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. 2007. Scaling up all pairs similarity search. In
Proceedings of the 16th international conference on World Wide Web (WWW '07). ACM, New York, NY, USA,
131-140. 54

	Are You My Neighbor? Bringing Order to Neighbor Computing Problems.
	Part V:�Filtering-Based Search
	Tutorial Outline
	Talk Outline
	What is filtering-based search?
	How to prune the search space
	Take advantage of sparsity
	Index and Accumulator: a match made in heaven
	IdxJoin: A straight-forward solution
	Datasets
	The sparsity advantage: IndexJoin vs. 𝑛 2 /2
	LSH vs. IndexJoin
	A prelude: prefix and suffix vectors
	So what in the world is partial indexing?
	Partial indexing in practice
	Search using a partial index
	Angle/Suffix Filtering
	Angle/Suffix Filtering
	But won’t it take longer to compute those norms?
	Filtering in practice
	How fast is it?
	The case of k-NNG construction
	Step 1: Approximate graph construction
	Step 1: Approximate graph construction
	How important is Step 1?
	Step 2: Filtering
	How well does the filtering work?
	How fast is it?
	Approximate methods could use filtering too
	Filtering helps improve efficiency
	How fast is it?
	What if we used parallelism?
	Cache tiling
	Masked hash table
	Neighborhood updates
	Tiling in practice
	How fast is it?
	When both length and angles matter
	Length-based filtering
	Subset of cosine neighborhood
	Length + Angle-Based Pruning
	How fast is it?
	Effective proximity bounds and when they are most useful
	What will the output look like?
	Pruning Effectiveness Comparison
	Neighborhood Graph Statistics
	Not all pruning is created equal
	When less is more
	Some filtering may cover other filtering
	Summary and Open Questions
	In summary
	Questions?
	References
	References

