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Tutorial Outline
 Part I: Problems and Data Types
 Dense, sparse, and asymmetric data
 Bounded nearest neighbor search
 Nearest neighbor graph construction
 Classical approaches and limitations

 Part II: Neighbors in Genomics, 
Proteomics, and Bioinformatics
 Mass spectrometry search
 Microbiome analysis

 Part III: Approximate Search
 Locality sensitive hashing variants
 Permutation and graph-based search
 Maximum inner product search

 Part IV: Neighbors in Advertising and 
Recommender Systems
 Collaborative filtering at scale
 Learning models based on the neighborhood 

structure

 Part V: Filtering-Based Search
 Massive search space pruning by partial 

indexing
 Effective proximity bounds and when they 

are most useful

 Part VI: Neighbors in Learning and 
Mining Problems in Graph Data
 Neighborhood as cluster in a complex 

network system
 Neighborhood as influence trigger set
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Talk Outline
• What is filtering-based search?
• Massive search space pruning by partial indexing  [and other pruning 

strategies]
• So what in the world is partial indexing?
• Search using a partial index
• The case of k-NNG construction
• Approximate methods could use filtering too
• What if we used parallelism
• When both length and angles matter

• Effective proximity bounds and when they are most useful
• Not all pruning is created equal
• When less is more

• Open questions 4



What is filtering-based search?

• Given a similarity bounding threshold, there is no need to compute the 
full similarity between a pair of vectors to tell if they are similar enough

• Compute an upper bound similarity estimate
• Prune/filter the pair if the similarity estimate is below the threshold

5



How to prune the search space
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All Pairwise Similarities

Vector lengths

Sparsity

True neighbors

Vector angles

Angles & lengths



Take advantage of sparsity
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Index and Accumulator: a match made in heaven

• Inverted index: set of lists, one for each feature, containing 
documents and their associated values
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𝑑𝑑5 𝑑𝑑5

𝑑𝑑5 𝑑𝑑4 𝑑𝑑4 𝑑𝑑5 𝑑𝑑4

𝑑𝑑3 𝑑𝑑3 𝑑𝑑2 𝑑𝑑3 𝑑𝑑2

𝑑𝑑2 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1 𝑑𝑑1

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6

Inverted Index

𝑓𝑓1 𝑓𝑓2 𝑓𝑓5𝑑𝑑3

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5

Accumulator

𝐴𝐴 𝑑𝑑2 += 𝑑𝑑3,1 × 𝑑𝑑2,1
𝐴𝐴 𝑑𝑑5 += 𝑑𝑑3,1 × 𝑑𝑑5,1
𝐴𝐴 𝑑𝑑1 += 𝑑𝑑3,2 × 𝑑𝑑1,2
𝐴𝐴 𝑑𝑑4 += 𝑑𝑑3,2 × 𝑑𝑑4,2
𝐴𝐴 𝑑𝑑5 += 𝑑𝑑3,2 × 𝑑𝑑5,2

[…]



IdxJoin: A straight-forward solution
• Method:

Compute and store vector norms
Construct an inverted index from the objects
For each query object:
• Compare only with objects with features in common
• Select neighbors

• Results in EXACT solution
• Advantage:

• Skips some object comparisons and many meaningless multiply-
adds
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Datasets
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The sparsity advantage: IndexJoin vs. 𝑛𝑛2/2
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• A large number of comparisons are filtered by the sparsity constraints
• For Orkut and Wiki, 99% or more of the comparisons are simply ignored



LSH vs. IndexJoin
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• In all experiments, LSH parameters were tuned to achieve at least 95% accuracy.
• LSH outperforms IndexJoin at high thresholds.
• Performs poorly at low thresholds and for high dimensional datasets (Orkut, Wiki).



A prelude: prefix and suffix vectors
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Main idea:
Only need to index enough non-zeros to guarantee correct result.

• We’ll focus initially on the min-𝜖𝜖 graph construction problem.

So what in the world is partial indexing?
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Partial indexing in practice
• L2AP indexes fewer non-zeros than previous approaches

• Leads to greatly improved execution runtime
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L2AP follows a two-step process:
1. Accumulate similarity using partial inverted index

2. For each un-pruned object, finish similarity computation using 
forward index
• Only need to compute a subset of similarities:  
• Can do further filtering

Search using a partial index
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Forward 
index

Inverted 
index

-1 -1 .25 -1 .54

𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5

Accumulator

http://davidanastasiu.net/software/l2ap/

http://davidanastasiu.net/software/l2ap/


Angle/Suffix Filtering
Filter/prune object pairs not in final graph based on 
similarity estimates

Filter sim(𝑑𝑑𝑞𝑞 ,𝑑𝑑𝑐𝑐) if 
17

(Cauchy-Schwarz inequality)

𝐴𝐴[𝑑𝑑𝑐𝑐]

𝑓𝑓1 𝑓𝑓2 𝑓𝑓3 𝑓𝑓4 𝑓𝑓5 𝑓𝑓6
p

* *

*



Angle/Suffix Filtering
Filter/prune object pairs not in final graph based on 
similarity estimates

Filter sim(𝑑𝑑𝑞𝑞 ,𝑑𝑑𝑐𝑐) if 
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But won’t it take longer to compute those norms?

• We pre-compute all necessary norms and store them in a compressed 
sparse row (CSR) –like data structure

• O(nnz) time and space for this step
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Filtering in practice
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• L2AP filters most objects without computing their similarity 

Mean % accumulated non-zeros



How fast is it?
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• L2AP outperforms all exact and most approximate baselines 



The case of k-NNG construction

• Build an initial approximate graph �𝐺𝐺
• Provides thresholds for filtering

• Improve �𝐺𝐺 until exact
• Search for objects that can improve neighborhoods

22

• In the k-NN problem, we don’t have a nice global minimum similarity 
threshold we can use for filtering

• It exists, but 
• (1) we don’t know it
• (2) it is likely too low to make a difference

• We can use local incomplete (approximate) neighborhood thresholds
• L2Knng strategy:

http://davidanastasiu.net/software/l2knng/

http://davidanastasiu.net/software/l2knng/


Step 1: Approximate graph construction

a) Heuristically choose candidates likely to succeed
• Find an initial neighborhood for each object

• This step results in an initial approximate graph
23

𝑑𝑑3 𝑓𝑓1 .72 𝑓𝑓2 .49 𝑓𝑓5 .49

• Sort vectors and inverted lists in non-increasing weight order
• Traverse inverted lists and gather 𝜇𝜇 ≥ 𝑘𝑘 candidates

𝐶𝐶𝜇𝜇=3 = 𝑑𝑑5,𝑑𝑑1,𝑑𝑑4

• Compute similarities with candidates and keep the 𝑘𝑘 nearest 
neighbors
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Step 1: Approximate graph construction

b) Improve initial approximate graph

• Find potential better neighbors for each object (𝛾𝛾
times)

• Visit neighbors in non-increasing similarity order
• Consider 𝑑𝑑𝑠𝑠, a neighbor of 𝑑𝑑𝑟𝑟, as a candidate if:

• Have collected less than 𝜇𝜇 candidates
• 𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑠𝑠,𝑑𝑑𝑟𝑟) ≥ 𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑟𝑟 ,𝑑𝑑𝑞𝑞)

• Compute similarities with candidates and update 
both neighborhoods of 𝑑𝑑𝑠𝑠 and 𝑑𝑑𝑞𝑞

24

𝐶𝐶𝜇𝜇=3(𝑑𝑑1) = 𝑑𝑑6,𝑑𝑑3,𝑑𝑑4



How important is Step 1?

25

Influence of initial 
graph quality 
toward exact
graph construction



Step 2: Filtering

• For each query object 𝑑𝑑𝑞𝑞,
• Find previously processed objects such that:

• 𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑐𝑐 ,𝑑𝑑𝑞𝑞) > σ𝑑𝑑𝑞𝑞: can improve query obj. neighborhood
• 𝑠𝑠𝑠𝑠𝑠𝑠(𝑑𝑑𝑐𝑐 ,𝑑𝑑𝑞𝑞) > σ𝑑𝑑𝑐𝑐: can improve neighborhood of previously processed objects

• Verify list of candidate objects:
• prune object pair as soon as possible
• else update neighborhoods of both objects

• Index processed query object

• Caveats
• Neighborhoods stored in max-heaps
• Index tiling used to improve neighborhoods quicker

26



How well does the filtering work?
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Number of candidates pruned in different 
stages of the filtering framework



How fast is it?

28

Approximate Baselines Exact Baselines



Approximate methods could use filtering too
• CANN applies the ideas in L2AP and L2Knng-a to the approximate

min-𝜖𝜖 graph construction problem

• Approximate solution, in 2 steps:
1. Construct approximate min-𝜖𝜖 𝑘𝑘-NN graph 𝒢𝒢

1) Heuristically choose objects that area likely neighbors:
a. Build partial inverted index for min-𝜖𝜖 search
b. Sort query vectors and partial inverted index in decreasing order
c. Choose objects with high weights in common

2. Use 𝒢𝒢 to construct final min-𝜖𝜖 NN graph
1) Zero or more graph improvement steps

a. Chose candidates among the neighbors of my neighbors that have 
higher similarity with my neighbor than me and my neighbor do 29



Filtering helps improve efficiency

30estimatecompute

• L2-Norm bound is most useful (ignore others)
• Helpful to hash the query vector (e.g., make it dense)

Bounded similarity computation with pruning:



How fast is it?

31Recall = 0.9



What if we used parallelism?

• Many processes/threads means potential contention over data 
structures or output space

• Must carefully design methods that delineate independent work for the 
threads while ensuring load balance

• If all threads have working data, they may overwhelm the cache and 
cause delays due to cache misses

• Cache tiling and memory-efficient data structures can help reduce the cache 
footprint of each thread

32



Cache tiling
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Masked hash table
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Neighborhood updates
• Local neighborhood updated during search
• Candidate neighborhood updates staged for cooperative update at 

the end of query block
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Tiling in practice

36

Percent Instructions Leading to Cache Misses (Collisions)
pL2AP – tiled index
pL2AP_rr – full inverted index

Load Balance



How fast is it?

3724 threads @ 2.5 GHz Intel Xeon E5-2680v3 \w 30 Mb Cache



When both length and angles matter

• Tanimoto min-𝜖𝜖 NNG Construction

For each object 𝑑𝑑𝑖𝑖 from a set 𝐷𝐷,
find all neighbors 𝑑𝑑𝑗𝑗 with T 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 ≥ 𝜖𝜖.

38http://davidanastasiu.net/software/tapnn/

𝒅𝒅𝒊𝒊 𝒅𝒅𝒋𝒋



Length-based filtering
• 𝑑𝑑𝑞𝑞 and 𝑑𝑑𝑐𝑐 cannot be neighbors unless

• 𝛼𝛼 bound due to Marzena Kryszkiewicz, IIDS 2013

• Relabel objects in non-decreasing length order
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Subset of cosine neighborhood
• The following inequalities hold for our domain:

• Potential solution
• Store vector norms and normalize vectors
• Find cosine neighbors (L2AP-like filtering here)
• Transform C 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗 to T 𝑑𝑑𝑖𝑖 ,𝑑𝑑𝑗𝑗
• Remove non-Tanimoto neighbors

• Tighter bound due to Lee et al., DEXA 2010
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Length + Angle-Based Pruning

• 𝑑𝑑𝑞𝑞 and 𝑑𝑑𝑐𝑐 cannot be neighbors unless

where 𝑠𝑠 is any cosine similarity upper bound
such as the ones we compute during filtering.
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How fast is it?

42
Scales well as data set size increases.



Effective proximity bounds and 
when they are most useful



What will the output look like?

And, a related question, how do I choose 𝜖𝜖/𝑘𝑘?
• Output of similarity search/graph construction is data-dependent

• For some data sets, you get no neighbors at 𝜖𝜖 = 0.95 cosine similarity; for 
others, you get many neighbors

• A given 𝜖𝜖 threshold means different things in different contexts

• Number of neighbors is dependent on dimensionality 
• By the pigeon hole principle, when 𝑛𝑛 ≫ 𝑠𝑠, more likely to see collisions 

(features in common)

• Filtering effectiveness is dependent on stdev of feature weights
• If all features weight the same, it will take longer to accumulate similarity

• Parameter choices are often dependent on subsequent analysis that 
the neighbors are sought for
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Pruning Effectiveness Comparison
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Neighborhood Graph Statistics
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𝜇𝜇: Average neighborhood size
𝜌𝜌: Output graph density



Not all pruning is created equal
• Designed many filtering criteria for the min-𝜖𝜖 and 𝑘𝑘-NN problems. E.g.,

• Some of the criteria are problem-specific (L2-Norm-bound is not)
• Of all criterial, the L2-Norm bound is the most productive (by far)
• Some have suggested less pruning may be more efficient

• E.g., De Francisci Morales & Gionis, VLDB’16 (extended L2AP to streaming case)
• May be data specific, but has not been my finding so far 47



When less is more
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• The amount of pruning is not directly proportional to efficiency



Some filtering may cover other filtering

49



Summary and Open Questions



In summary
• Creating sparsity-aware algorithms goes a long way towards efficient 

solutions to hard problems
• Filtering is a very effective technique for similarity search, especially for 

sparse data and asymmetric proximity measures
• L2-norm filtering is extremely effective for cosine similarity and 

Tanimoto coefficient – may also be beneficial in other proximity 
measures (e.g., Euclidean distance)

• More research is needed to:
• Derive new even tighter filtering bounds
• Identify optimum balance between checking and not checking bounds
• Characterize NNS pruning and output based on feature statistics

• Yuliang Li et al. (ICDT2019) prove optimality guarantees for L2-norm filtering of skewed data
• They also propose alternate and partial inverted list traversal + lower-bound filters



Questions?
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