
Efficient Deployment of Very Wide and Very Deep
Hypersparse FFNs on FPGA

Paramdeep Singh
Computer Science and Engineering

Santa Clara University
Santa Clara, CA, USA

psingh7@scu.edu

David C. Anastasiu
Computer Science and Engineering

Santa Clara University
Santa Clara, CA, USA

danastasiu@scu.edu

Abstract—Model compression techniques such as quantization
and pruning have shown great promise in drastically reducing
model size without degrading model effectiveness. Quantization
of model parameters when combined with parameter pruning
results in a significantly reduced model size. However, such sparse
neural networks have irregular structures. As such the forward
pass (inference step) of such networks cannot be executed
efficiently by processing hardware like GPUs. FPGA’s offer a
flexible platform to process irregular sparse networks. However,
in order to fully realize the efficiency gains promised by the
FPGA architecture, it is essential to minimize or completely
eliminate off-chip memory accesses. Accommodating a large
model completely on the FPGA fabric is restricted by the scarcity
of available high-speed on-chip RAM, forcing a fraction of model
weights to be stored in off-chip DRAM. We propose a method to
accommodate very wide and very deep hypersparse feed forward
networks (FFNs) completely on the FPGA fabric by compressing
data structures in addition to quantizing the network parameters.
Our method makes it possible to fit large FFNs completely on the
FPGA fabric, resulting in inference performance almost 1000x
higher than that of the state-of-the-art.

Index Terms—Deep Neural Networks, FPGA Neural Network
Acceleration, Sparse Networks, High Performance Computing.

I. INTRODUCTION

Feed Forward Networks (FFNs) have proven to be versa-
tile architectures for many machine learning tasks, including
image classification, recommender systems, and time series
predictions. For some problems, it is essential that we ob-
tain these predictions in real-time. In the medical domain,
especially in the field of radiology, FFNs play an integral
role in electro-cardiogram (ECG) de-noising [1]. They have
also been extensively used as an effective means for data
compression [2] to allow efficient use of bandwidth between
communication endpoints. FFNs have also become an integral
part of modern cognitive networks such as CNN’s [3], [4] and
Transformer-based LLMs [5], [6].

In this project, we focus on very deep and very wide
sparse FFNs and how they can be deployed in the embedded
domain, both as stand-alone and as backbone networks for
more complex cognitive tasks. The flexible and versatile
hardware architecture and low power requirements of FPGA’s

make them a promising solution for processing large FFNs
efficiently, especially at the edge.

The processing cost of FFNs can be significantly reduced
by pruning away unimportant weights, also known as sparsifi-
cation, and weight quantization [7]. Recently, the availability
of powerful sub-billion parameter LLMs and advances in
model compression techniques has led to an era of Small
Language Models (SLMs) [8]. SLMs are ideal candidates for
deploying LLM capabilities at the edge. The unique hardware
architecture of FPGAs is uniquely suited for hosting SLM’s
either completely on their own, or as a part of a System
On Chip (SOC) solution. The irregular network structures
resulting from the application of aggressive model compres-
sion techniques to SLMs, make SOCs with large FPGA a
highly viable platform to deploy SLMs. Our work endeavors to
develop highly efficient FPGA accelerators for sparse FFN’s,
which can be used as sub systems of larger SLM/CNN
accelerators, or as stand-alone FFN accelerators. We focus on
the following challenges which must be overcome to fully
realize the benefits of the FPGA architecture to enable highly
efficient inference at the edge:

• Minimizing off-chip memory accesses. FPGAs are pri-
marily used as custom processors, relying on off-chip
DRAM for data.

• Optimizing usage of scarce BRAM and URAM.
• Parallelizing the custom processing logic.

II. BACKGROUND

Commodity inference hardware, such as GPUs, supports
structured sparsity at the block level. Structured sparsity refers
to the systematic pruning of neural network weights, where
certain patterns of weights (e.g., entire blocks or groups) are
set to zero, enabling hardware optimizations. For instance,
the NVIDIA Ampere Architecture implements 2:4 sparsity,
meaning that half of the weights in the network are set to zero
in dense subgroups. Although structured sparsity offers com-
putational benefits, it can lead to accuracy degradation [9]. As
sparsity becomes more fine-grained, transitioning from block-
level to global sparsity (e.g., 2:8, 2:16, etc.), the overhead for
identifying indices of non-zero values (NNZs) increases. With
globally pruned sparse networks, maintaining the absolute
indices of NNZs becomes critical.

Compressed Sparse Row (CSR) is a widely used data struc-
ture for storing weight matrices in globally sparse networks.
CSR represents a sparse matrix using three arrays. The ‘values’
array stores all non-zero weights contiguously. The ‘indices’
array holds the row positions of these weights and matches
the size of the ‘values’ array. Together, these arrays enable
efficient representation and retrieval of sparse matrix data.

FPGAs are particularly well suited for performing Sparse
Matrix Vector Multiply (SPMV) operations when sparse matri-
ces are stored in the CSR format and the corresponding vectors
are stored in dense format. These operations dominate the
computational workload during the inference phase of feed-
forward networks (FFNs). Although FPGAs can parallelize
dot product computations due to their flexible architecture,
achieving high throughput requires that all necessary data for
the forward pass be stored on the FPGA fabric. A common
bottleneck arises from frequent accesses to weights stored in
DRAM and the subsequent writing of results back to DRAM.

Quantizing weights is an effective approach to reduce the
total data size required for the forward pass. In sparse networks
stored in the CSR format, quantization significantly reduces
the number of bits needed to store the ‘values’ array. Recent
studies demonstrate that weights can be quantized to very
low bit-widths without compromising the effectiveness of
FFNs [10]. However, for extremely wide and deep quantized
sparse FFNs, the memory demand for storing the indices of
NNZs can surpass that required for storing quantized weights.
Table I shows the proportion of total memory occupied by
indices arrays at different quantization levels for very wide
FFNs. In this work, we present an algorithm to reduce the
number of bits required to store indices information, enabling
the accommodation of very large FFNs completely on the
FPGA fabric.

TABLE I
PROPORTION OF MEMORY OCCUPIED BY INDICES ARRAYS

Network Width
Quantization (bits) 1024 2048 4096 8192

16 38.46% 40.74% 42.86% 44.83%
8 55.56% 57.89% 60.00% 61.90%
4 71.43% 73.33% 75.00% 76.47%

III. RELATED WORK

The reduction of model size through parameter pruning [11],
[12] has been extensively studied. The primary pruning ap-
proaches include Structured Pruning, Unstructured Pruning,
and Pre-Pruning. Structured Pruning [13], [14] is a coarse-
grained method that removes entire network components such
as filters, layers, and channels. This approach enables effi-
cient processing on commodity hardware like GPUs. How-
ever, structured pruning often results in a loss of model
effectiveness. This degradation arises because block-sparse
structures require a minimum number of non-zero elements
(NNZs) within blocks, which may include globally insignifi-
cant weights. Structured pruning has been extensively explored
in FPGA settings. Wang et al. proposed an FPGA accelerator

for LSTM networks pruned via structured pruning [15]. Their
method prunes entire columns of the weight matrix during
training, removing columns whose cumulative weight magni-
tudes fall below a threshold. The resulting sparse matrix is
processed using a bit mask that indicates pruned (’0’) and
unpruned (’1’) indices. Similarly, Han et al. introduced load-
balance-aware pruning, maintaining a constant pruning ratio
across all submatrices to ensure equal work distribution among
Processing Elements (PEs) [16]. Shi et al. proposed a hybrid
approach that combines the benefits of structured and unstruc-
tured pruning [17]. By applying unstructured pruning within
predefined structured matrix blocks, they limit the processing
complexity associated with fully unstructured matrices while
retaining unstructured pruning’s advantages within the blocks.

Unstructured pruning [9], [12], [18] is a fine-grained ap-
proach where individual weights are pruned based on their
significance. Magnitude-based pruning, the simplest form of
unstructured pruning, ranks all weights in the network by
magnitude and removes a percentage of the lowest-ranked
weights, regardless of their position. This method minimizes
the degradation of model effectiveness compared to structured
pruning. However, unstructured pruning creates irregular net-
work structures that are challenging to process efficiently on
hardware like GPUs. Huang et al. proposed an FPGA accel-
erator that mitigates this issue for very wide and deep sparse
FFNs [19]. Their accelerator divides sparse FFN matrices into
configurable tiles, assigning these tiles to PEs on the FPGA.
The tile size and corresponding PEs are adjustable to fit the
target device’s capacity.

Unstructured pruning typically begins with a dense refer-
ence network. The final pruned subnetwork is achieved after
several iterations of training, followed by the removal of
a fraction of the least important parameters in each round.
This iterative process is computationally intensive and time-
consuming. Pre-Pruning [20]–[22], a variation of unstructured
pruning, eliminates the need for a dense reference network.
Instead, it starts with a network initialized with a sparse
topology, often selected randomly, and trains the network to
convergence. This approach reduces computational resources
and time. The Lottery Ticket Hypothesis (LTH) [23] is one
of the most effective pre-pruning techniques. LTH involves
pruning a trained network by removing a percentage of
weights based on their magnitudes. The pruned network is
then reinitialized with its original weights, and the process is
repeated to produce progressively sparser networks.

IV. METHOD

Our method focuses on reducing the total memory footprint
of very wide and very deep sparse FFNs represented using the
CSR data structure. The primary objective is to fit the entire
network onto the FPGA fabric, thereby eliminating all off-chip
memory accesses. The memory footprint of model parameters
can be reduced significantly by quantizing them and has been
studied extensively. Unlike network parameters, indices arrays
of sparse FFNs represented using CSR data structures cannot
be quantized to reduce their memory footprint.

. . .

. . .

1024 units/layer

. . .

. . .

12
0

la
ye

rs

outputs

Compressed arrays.
Generated by encoding
algorithm and programmed
permanently into FPGA
BRAMs.

PE

FPGA Fabric

val

idx_base
idx_offset

…

PE

…

…

PE

…

Ac
tiv

at
io

ns
 (P

in
g-

Po
ng

 b
uf

fe
rs

)

Logits

…
…
…
…

…
…
…
…

…
…
…
…

bias

Dedicated BRAMs

Dedicated BRAMs

Dedicated BRAMs

FPGA
Bitstreams

FFN

decoding algo.
sparse dot prod.

val

idx_base
idx_offset

bias

val

idx_base
idx_offset

bias

Fig. 1. Overall System Architecture

Fetching model parameters and indices of NNZs from off-
chip DRAM to the PEs synthesized on the FPGA fabric can
take orders of magnitude longer than fetching data from on-
chip Block Random Access Memory (BRAM). Data from
BRAM can typically be accessed in a single clock cycle,
whereas accessing off-chip DRAM may require several hun-
dred clock cycles. In very wide sparse FFNs, the indices arrays
constitute the majority of the data required for inference. To
address this bottleneck, we propose a method to encode the
indices arrays in a highly memory-efficient format.

Although our method is applicable for any FFNs, we specifi-
cally focus on FFNs pruned using RadiX-Net pre-pruning [24].
In the following subsections, we detail our approach. We begin
with an overview of the accelerator design, followed by a
discussion on the properties of RadiX-Net pre-pruning. Next,
we describe how RadiX-Net pre-pruning facilitates encoding
the indices arrays into a compressed format. Finally, we
explain the decoding algorithm used to reconstruct the absolute
index values from their compressed representations.

A. Accelerator Architecture

Fig. 1 depicts the overall architecture of our sparse FFN
accelerator. The primary objective of this accelerator is to
accommodate as large a sparse FFN as possible entirely on
the FPGA fabric and to efficiently execute its inference step.
To achieve this, we focus on three key objectives: eliminating
off-chip memory accesses, minimizing on-chip resource us-
age, and parallelizing layer processing. By compressing both
the model parameters and the indices arrays, our method
eliminates round-trips to the DRAM and minimizes on-chip
resource usage. These optimizations ensure that all data re-
quired for inference is embedded within the bitstream used to
configure the FPGA. Consequently, the only data exchanged
with the environment comprises the input and output vectors.

Our design incorporates a high degree of parallelism by
having a dedicated PE for each network layer. Each PE acts
as a pipeline stage in a Dataflow Pipeline. The availability
of a large number of BRAMs on the FPGA fabric enables
assignment of dedicated sets of BRAMs to each PE, allowing
all PEs to run in parallel. Each PE reads four arrays to perform
a sparse dot product. The idx base and idx offset arrays are

used to reconstruct the indices of non-zero weights present
in the layer. The val and bias arrays contain the quantized
weights and biases, respectively. The dense activations be-
tween PEs are implemented as ping-pong buffers.

B. RadiX-Nets Pre-Pruning

RadiX-Nets [24] are pre-pruned networks initialized as
sparse networks without reference to any dense parent net-
work. These topologies are based on mixed-radix number
systems, which result in network structures where all nodes
in a layer connect to a fixed number of nodes in the subse-
quent layer. The use of mixed-radix numeral systems ensures
symmetry, a property that guarantees path connectedness and
reduces training bias. These characteristics make RadiX-Nets
as expressive as their dense counterparts [25], even at very
high levels of sparsity.

RadiX-Net sparsity exhibits traits of both unstructured and
structured (N:M) sparsity. As N ≪ M , the distribution
of NNZs becomes incompatible with hardware designed to
process structured sparsity where N and M are closer in
value. In terms of model effectiveness, RadiX-Nets are more
robust than structured sparse networks with low N:M ratios
and are comparable to globally unstructured pruned networks
at identical pruning levels. The NNZ distribution in very
sparse and hyper-sparse RadiX-Nets suggests that techniques
designed for globally unstructured pruning could be applied.
However, careful analysis of their overall sparsity patterns
reveals opportunities for significantly more efficient processing
compared to fully unstructured counterparts. Thus, RadiX-Net
pre-pruning offers a way to retain the robust characteristics
of unstructured pruning without incurring the full processing
cost associated with it.

C. Encoding Algorithm

The encoding algorithm, described in Algorithm 1, is a one-
time pre-processing step in the accelerator design process. It
transforms the array of indices from the CSR format into a
more memory-efficient representation. The method assumes
that the FFN’s width (M) is a power of 2 (e.g., 1024, 2048,
4096, . . .) and considers the weight matrix as a single block
with structured sparsity in the form N :M , where N ≪ M .
This sparsity pattern, referred to as quasi-unstructured sparsity,
allows for a compact representation of indices.

The algorithm outputs two arrays, idx base and
idx offset, which together require significantly less
memory than the original array of absolute indices. Fig. 2
demonstrates the encoding process for a single neuron
with 32:1024 sparsity. The inputs to the algorithm are the
array of absolute indices of all NNZs in single neuron,
sorted in ascending order, the number of NNZs per neuron,
denoted by N , and the width of the network M . The
algorithm initializes a bit vector for the neuron with a
leading ‘1’ bit, and sets currentbase and the counter idx
to 0. Then it scans the sorted array of absolute indices
sequentially. If the difference between the current absolute
index and currentbase is less than baseinc, the algorithm

Array of absolute indices (bit-width of each index = log2(Network Width))

1111001011001001001001011010110001010011010101010101010101001000

idx_offset array

single entry in idx_base array (bitmap corresponding to neuron)

11011 11011 00101 10000 10111 01111 11101 10001 11000 01110 10000 11010 11000 10010 00110 01100

10100 01111 00000 10100 11010 01111 11000 10100 00011 00000 00010 10101 01100 10111 11011 11000

Initialization bit

0001111011 0001111011 0010000101 0011010000 0011010111 0011101111 0011111101 0100010001

0100011000 0100101110 0100110000 0101011010 0110011000 0110110010 0111100110 0111101100

0111110100 1000001111 1000100000 1000110100 1001111010 1010001111 1010111000 1011010100

1011100011 1100000000 1100100010 1101010101 1101101100 1110010111 1110011011 1110111000

Entry padded to 64 bits

Fig. 2. Encoding all NNZs of a single neuron. The neuron in this example
exhibits a sparsity of 32:1024

11110010110010010010010110101100010100110101010101010101010010000
‘111’ = 32 + 32 + 32 = 96 = 1100000

11011+

0001111011 (Absolute index value)

Retrieve base for first index

Add offset to base
(First offset)

(First base)

Ignore leading ‘1’

Fig. 3. Decoding a single absolute index

appends a ‘0’ bit to the bit vector and stores the difference
(current absolute index− currentbase) in the idx offset
array. Otherwise, currentbase is incremented by baseinc
until the difference between the current absolute index and
currentbase is less than baseinc. Each increment adds
a ‘1’ bit to the bit vector. Once all N indices have been
processed, the resulting bit vector and corresponding offset
values are appended to the idx base and idx offset arrays,
respectively.

The length of the bit vector is bounded by 2N bits, ensuring
a compact representation. In the illustrated example with M =
1024 and N = 32, this results in a maximum bit vector length
of 64 bits (including the initialization bit). This compression
significantly reduces the memory footprint while preserving
all the information contained in the indices array.

Data: sortedlist,N,M
Result: bitvec, offsets
bitvec← 1, currentbase← 0, baseinc←M/N , idx← 0
while idx < N do

if (sortedlist[idx]− currentbase) ≤ baseinc then
bitvec← bitvec&0;
idx← idx+ 1;
offsets[idx]← sortedlist[idx]− currentbase;

else
bitvec← bitvec&1;
currentbase← currentbase+ baseinc;

end
end

Algorithm 1: Encoding Algorithm

D. Decoding Algorithm

The decoding algorithm (Algorithm 2) is implemented as
custom processing logic within the PE of each layer, and is
invoked at each inference pass. It reconstructs the absolute
values of indices from the idx base and idx offset arrays
created by the encoding algorithm.

For each neuron the algorithm reads in its corresponding
bitmap from the idx base array. This is followed by initializ-

ing the variable currentbase to zero. It then scans the bit
vector starting from its second most significant bit (MSB)
until all absolute indices for the given neuron have been
reconstructed.

When a ‘0’ bit is encountered, the next offset value is
read from the idx offset array and added to currentbase to
reconstruct the absolute index. This index is used to fetch the
corresponding activation value from the prior layer’s activation
vector, which is multiplied by the corresponding weight value
in the values array, and the result is accumulated. After each
multiplication, the pointer to the values array is incremented
by one.

When a ‘1’ bit is encountered, the value of currentbase is
incremented by baseinc, which updates the base value used
for subsequent index reconstructions.

The process continues until all NNZ indices for the neuron
have been recovered. Although a variable number of bits may
need to be scanned to construct each base value, the total
number of bits required for all base values of a neuron is
bounded by 2N . This bounded requirement allows for the
use of fixed-length data types. In this implementation, the bit
vector for each neuron is stored using a 64-bit (long int) data
type.

The decoding algorithm operates concurrently for all lay-
ers, ensuring efficient and high-throughput execution. Fig. 3
depicts an example of decoding an index value.

Data: bitvec,N,M, offsets
Result: indices
currentbase← 0, baseinc←M/N , idx← 0, i← 0
while i < N do

if bitvec[idx] == 0 then
indices[i]← currentbase+ offsets[i];
i← i+ 1;

else
currentbase← currentbase+ baseinc;

end
idx← idx+ 1;

end
Algorithm 2: Decoding Algorithm

V. EXPERIMENT DESIGN

A. Dataset and Metrics

We used the MNIST dataset to evaluate our method, with
60,000 training images and 10,000 testing images, each of size
32× 32. Images are categorized into 10 classes depending on
the digit they represent. From the training set, we segregated
15,000 images as the validation set. We use accuracy as the
primary effectiveness metric for each model.

B. Networks

We created pre-pruned FFNs with relatively fewer
(2, 3, 4, 6) and larger (10, 20, 30 . . . , 120) number of layers
using Radix-Net pre-pruning [24]. Each layer except the output
layer had exactly 1024 units in all networks. The output layer
had 10 units, as specified for the multiclass classification task
for which the model is trained, and was left unpruned. The

bit-widths of all network weights were restricted to signed 4-
bit values. The activations were restricted to 4-bit unsigned
values, and the biases were restricted to 8-bit signed values.
Quantization was performed on a per-layer basis.

C. Model training

All networks were trained with Pytorch 2.4.1 on a Super-
micro SYS-420GP-TNAR+ system with NVIDIA HGX A100
8-way GPUs1, using only one GPU for all training. We used
the Brevitas 0.11.0 library for Quantization Aware Training
(QAT) and the Adam optimizer with a learning rate of 10e−3,
batch size of 256, and cross entropy loss. Most networks
converged to optimal levels after 2-3 training iterations, with
each iteration lasting 100 epochs.

D. FPGA Implementation

The FPGA accelerator was designed entirely using High
Level Synthesis (HLS), in the AMD Vitis 2024.2 development
environment. A python script was used to extract the val,
idx base, idx offset and bias arrays, for each layer from the
trained models (.pth files), and instantiated as CONST arrays
in the HLS design, ensuring all parameters become part of
the bitstream and are synthesized as BRAMs. The Quantize-
Dequantize-Quantize (QDQ) approach was used to implement
the inference step. The required scale factors were extracted
from the Open Neural Network Exchange (ONNX) represen-
tation of the trained models. The scale factors were stored
using fixed-point data types, enabling efficient computations.

E. Measurement of efficiency

The clock period (CP) achieved after the implementation
phase (place and route) was used to calculate the latency
and performance of the design. The latency was calculated as
CP×cycles/layer×#layers. The throughput was calculated
as CP × cycles/layer.

VI. RESULTS AND DISCUSSION

We compared our method against that of Huang et al. [19]
on the Xilinx VC 709 board, which is also used by the
baseline against which we compare our method. The selection
of this board assures a fair comparison of our method with
the baseline. Our results are composed of two parts. The first
part of the results compares the efficiency of our method
with that of the baseline, both in terms of inference time and
resource utilization. The second part of the results demonstrate
that model effectiveness is retained after the optimizations
performed by our method.

A. Efficiency Results

The efficiency results are divided into two parts. First, we
compared the inference efficiency achieved by our method
with that of the baseline, in terms of inference time. Then,
we compared the two methods in terms of FPGA resources
utilized by each.

1This research was made possible through resources provided by Super-
micro and NVIDIA. Code for our project is available at https://github.com/
davidanastasiu/fast-ffn.

To maintain a fair comparison, we compare the inference
efficiency of our method with the baseline under the following
constraints:

• The baseline method uses several configurations. We
compare our results with the best performing configu-
ration reported by Huang et al.

• The baseline reports the inference performance for a
single image, which translates to the latency of the infer-
ence accelerator. Our results also report latency, averaged
across inference of all images in the test set using a 120-
layer FFN.

• We also report on the throughput of our accelerator for the
interested reader, along with the inference performance of
the baseline MATLAB code.

The ‘Performance’ section of table II summarizes the ef-
ficiency of our method w.r.t latency (lower is better) and
throughput. The latency achieved by our method is orders of
magnitude lower (better) compared to the SOTA baseline. Our
method’s lower latency is a direct consequence of its ability
to fit the entire network in the FPGA’s fabric and avoid costly
value look-ups in the DRAM. The second part of the efficiency
results summarized under the ‘Resource Usage’ section of
Table II compares the efficiency of the data paths in our
method with that of the baseline. The four main hardware
resource types used to construct a data path in an FPGA
are considered, namely Look-Up Tables (LUTs), Flip-Flops
(FFs), Block RAMs (BRAMs), and Digital Signal Processing
Units (DSPs). The superior timing performance of our method
comes at the expense of higher BRAM usage. However, it is
important to note that the data path of the baseline is invoked
several times during each inference pass, and the number of
such invocations is a function of the configuration used in the
baseline. Each inference pass in our method invokes the data
path only once.

B. Effectiveness results

Our effectiveness results show our method does not result
in material degradation of model effectiveness. Our effec-
tiveness studies comprised comparing effectiveness of models
of varying depths, compressed using our method with their
fully connected counterparts. The results showed only a slight
degradation (< 1%) in accuracy. For certain model depths our
method improved effectiveness.

VII. CONCLUSION

To the best of our knowledge, our work is the very first
attempt to deploy a very large pre-pruned FFN, which is
pruned using Radix-Net pre-pruning, completely on the FPGA
fabric. We achieved this objective by significantly compressing
the data structures associated with sparse networks, i.e., the
indices and values arrays of the CSR matrix. For models with
quantized parameters, the indices arrays of the CSR format
can account for a majority of the total memory requirements
of a pruned model. Radix-Net pre-pruning is almost as robust
as unstructured pruning when it comes to retaining model
effectiveness. However, compared to the network structures

https://github.com/davidanastasiu/fast-ffn
https://github.com/davidanastasiu/fast-ffn

TABLE II
EFFICIENCY RESULTS (120 LAYER NETWORK)

Method
Performance (sec) Resource Usage (%)

latency Throughput LUTs FFs BRAMs DSPs

Baseline (Matlab) 124.07 N/A∗ N/A∗ N/A∗ N/A∗ N/A∗

Baseline (Huang et. al.) 251.31 N/A∗ 48.43 26.86 55.44 4.17
Ours 0.247 0.0020 10.76 3.62 94.35 3.03

∗N/A = not reported

resulting from unstructured pruning, the networks resulting
from RadiX-Net pre-pruning possess some structure. We used
this key observation to develop algorithms to compress and
decompress the sparse data structures associated with RadiX-
Nets in a deterministic way. By combining the compression
of sparse data structures and quantizing model parameters,
we were able to accommodate a very wide and very deep
sparse FFN completely on the FPGA fabric. This led to
gains in performance which were orders of magnitude greater
when compared to the SOTA. We further demonstrated the
robustness of our method by performing a model effectiveness
study, which demonstrated the networks compressed using
our method are just as effective as their fully connected
uncompressed counterparts.

REFERENCES

[1] C. Pravin and V. Ojha, “A novel ecg signal denoising filter selec-
tion algorithm based on conventional neural networks,” in 2020 19th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2020, pp. 1094–1100.

[2] A. Berezkin, A. Slepnev, R. Kirichek, D. Kukunin, and D. Matveev,
“Data compression methods based on neural networks,” in Proceedings
of the 5th International Conference on Future Networks and
Distributed Systems, ser. ICFNDS ’21. New York, NY, USA:
Association for Computing Machinery, 2022, p. 511–515. [Online].
Available: https://doi.org/10.1145/3508072.3508177

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12. Red Hook, NY, USA: Curran Associates Inc.,
2012, p. 1097–1105.

[4] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” 2015. [Online]. Available: https://arxiv.org/abs/1512.03385

[5] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez,
A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient
foundation language models,” 2023. [Online]. Available: https:
//arxiv.org/abs/2302.13971

[6] L. Basyal and M. Sanghvi, “Text summarization using large
language models: A comparative study of mpt-7b-instruct, falcon-
7b-instruct, and openai chat-gpt models,” 2023. [Online]. Available:
https://arxiv.org/abs/2310.10449

[7] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[8] C. V. Nguyen, X. Shen, R. Aponte, Y. Xia, S. Basu, Z. Hu, J. Chen,
M. Parmar, S. Kunapuli, J. Barrow, J. Wu, A. Singh, Y. Wang, J. Gu,
F. Dernoncourt, N. K. Ahmed, N. Lipka, R. Zhang, X. Chen, T. Yu,
S. Kim, H. Deilamsalehy, N. Park, M. Rimer, Z. Zhang, H. Yang,
R. A. Rossi, and T. H. Nguyen, “A survey of small language models,”
2024. [Online]. Available: https://arxiv.org/abs/2410.20011

[9] E. Frantar and D. Alistarh, “Sparsegpt: Massive language models
can be accurately pruned in one-shot,” 2023. [Online]. Available:
https://arxiv.org/abs/2301.00774

[10] X. Sun, N. Wang, C.-y. Chen, J.-m. Ni, A. Agrawal, X. Cui,
S. Venkataramani, K. El Maghraoui, V. Srinivasan, and K. Gopalakr-
ishnan, “Ultra-low precision 4-bit training of deep neural networks,” in
Proceedings of the 34th International Conference on Neural Information
Processing Systems, ser. NIPS ’20. Red Hook, NY, USA: Curran
Associates Inc., 2020.

[11] B. Hassibi, D. Stork, and G. Wolff, “Optimal brain surgeon and
general network pruning,” in IEEE International Conference on Neural
Networks, 1993, pp. 293–299 vol.1.

[12] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” 2016. [Online]. Available: https://arxiv.org/abs/1510.00149

[13] S. Ashkboos, M. L. Croci, M. G. do Nascimento, T. Hoefler,
and J. Hensman, “Slicegpt: Compress large language models by
deleting rows and columns,” 2024. [Online]. Available: https:
//arxiv.org/abs/2401.15024

[14] X. Ma, G. Fang, and X. Wang, “Llm-pruner: On the structural
pruning of large language models,” 2023. [Online]. Available:
https://arxiv.org/abs/2305.11627

[15] S. Wang, P. Lin, R. Hu, H. Wang, J. He, Q. Huang, and S. Chang,
“Acceleration of lstm with structured pruning method on fpga,” IEEE
Access, vol. 7, pp. 62 930–62 937, 2019.

[16] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang, H. Yang, and W. J. Dally, “Ese: Efficient speech
recognition engine with sparse lstm on fpga,” 2017. [Online]. Available:
https://arxiv.org/abs/1612.00694

[17] R. Shi, P. Dong, T. Geng, Y. Ding, X. Ma, H. K.-H. So,
M. Herbordt, A. Li, and Y. Wang, “Csb-rnn: a faster-than-realtime
rnn acceleration framework with compressed structured blocks,”
in Proceedings of the 34th ACM International Conference on
Supercomputing, ser. ICS ’20. ACM, Jun. 2020, p. 1–12. [Online].
Available: http://dx.doi.org/10.1145/3392717.3392749

[18] M. Sun, Z. Liu, A. Bair, and J. Z. Kolter, “A simple and effective
pruning approach for large language models,” 2024. [Online]. Available:
https://arxiv.org/abs/2306.11695

[19] S. Huang, C. Pearson, R. Nagi, J. Xiong, D. Chen, and W.-m. Hwu,
“Accelerating sparse deep neural networks on fpgas,” in 2019 IEEE
High Performance Extreme Computing Conference (HPEC), 2019, pp.
1–7.

[20] C. Wang, G. Zhang, and R. Grosse, “Picking winning tickets before
training by preserving gradient flow,” 2020. [Online]. Available:
https://arxiv.org/abs/2002.07376

[21] H. Tanaka, D. Kunin, D. L. K. Yamins, and S. Ganguli, “Pruning
neural networks without any data by iteratively conserving synaptic
flow,” 2020. [Online]. Available: https://arxiv.org/abs/2006.05467

[22] N. Lee, T. Ajanthan, and P. H. S. Torr, “Snip: Single-shot network
pruning based on connection sensitivity,” 2019. [Online]. Available:
https://arxiv.org/abs/1810.02340

[23] B. Liu, Z. Zhang, P. He, Z. Wang, Y. Xiao, R. Ye, Y. Zhou, W.-S. Ku,
and B. Hui, “A survey of lottery ticket hypothesis,” 2024. [Online].
Available: https://arxiv.org/abs/2403.04861

[24] J. Kepner and R. Robinett, “Radix-net: Structured sparse matrices
for deep neural networks,” in 2019 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). IEEE,
May 2019, p. 268–274. [Online]. Available: http://dx.doi.org/10.1109/
IPDPSW.2019.00051

[25] K. Kwak, Z. West, H. Jananthan, and J. Kepner, “Testing radix-nets:
Advances in viable sparse topologies,” 2023. [Online]. Available:
https://arxiv.org/abs/2311.03609

https://doi.org/10.1145/3508072.3508177
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2310.10449
https://arxiv.org/abs/2410.20011
https://arxiv.org/abs/2301.00774
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2401.15024
https://arxiv.org/abs/2305.11627
https://arxiv.org/abs/1612.00694
http://dx.doi.org/10.1145/3392717.3392749
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2002.07376
https://arxiv.org/abs/2006.05467
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/2403.04861
http://dx.doi.org/10.1109/IPDPSW.2019.00051
http://dx.doi.org/10.1109/IPDPSW.2019.00051
https://arxiv.org/abs/2311.03609

	Introduction
	Background
	Related Work
	Method
	Accelerator Architecture
	RadiX-Nets Pre-Pruning
	Encoding Algorithm
	Decoding Algorithm

	Experiment Design
	Dataset and Metrics
	Networks
	Model training
	FPGA Implementation
	Measurement of efficiency

	Results and Discussion
	Efficiency Results
	Effectiveness results

	Conclusion
	References

