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The intersection of artificial intelligence (AI) and biomedicine
is rapidly evolving, presenting unprecedented opportunities to
transform healthcare and research. Large language models
(LLMs), exemplified by the widespread public interest in models
like ChatGPT, stand at the forefront of this revolution, demon-
strating remarkable capabilities in processing and generating
human-like text. These advancements have ushered in a new era
of possibilities within the biomedical field, ranging from enhanc-
ing diagnostic accuracy to accelerating drug discovery. How-
ever, despite their impressive progress, LLMs are not without
limitations, particularly in scenarios involving small datasets
where traditional machine learning methods may still offer sig-
nificant advantages. This report will explore the recent advance-
ments of LLMs in biomedicine, delve into their inherent limita-
tions, especially concerning data scarcity, highlight the strengths
of traditional machine learning approaches in specific biomed-
ical contexts, and provide comparative examples to illustrate
these points.
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Introduction
The intersection of artificial intelligence (AI) and
biomedicine is rapidly evolving, presenting unprecedented
opportunities to transform healthcare and research. Large
language models (LLMs), exemplified by the widespread
public interest in models like ChatGPT, stand at the forefront
of this revolution, demonstrating remarkable capabilities in
processing and generating human-like text [1]. These ad-
vancements have ushered in a new era of possibilities within
the biomedical field, ranging from enhancing diagnostic
accuracy to accelerating drug discovery [1–3]. However,
despite their impressive progress, LLMs are not without
limitations, particularly in scenarios involving small datasets
where traditional machine learning methods may still offer
significant advantages. This report will explore the recent
advancements of LLMs in biomedicine, delve into their
inherent limitations, especially concerning data scarcity,
highlight the strengths of traditional machine learning
approaches in specific biomedical contexts, and provide
comparative examples to illustrate these points.

Recent Advancements of LLMs in
Biomedicine
LLMs are sophisticated deep learning models that have
achieved remarkable proficiency in natural language process-
ing (NLP). Their core functionality lies in the ability to un-
derstand, generate, and interact through language by pre-
dicting the next word in a sequence based on statistical pat-

terns learned from vast amounts of text data [1, 4]. This ca-
pability forms the bedrock for their expanding applications
across various domains, including the text-intensive field of
biomedicine.
At the heart of many LLMs lies the Transformer model [5], a
novel architecture that has revolutionized how AI processes
sequential data like text. Unlike earlier models that processed
text word by word, the Transformer can look at all the words
in a sentence simultaneously, allowing it to understand the
context and relationships between words more effectively.
A key component of the Transformer is the “self-attention
mechanism,” which enables the model to weigh the impor-
tance of different words in the input when processing each
word. This allows the model to understand, for example, that
the word “protein” in one part of a sentence might be related
to “structure” mentioned later in the same sentence, regard-
less of the distance between them [6]. This ability to grasp
long-range dependencies in text is crucial for biomedical ap-
plications where understanding complex relationships within
scientific literature or patient records is essential.
One of the most promising areas for Transformers is clini-
cal decision support [7], where LLMs can assist healthcare
professionals in many ways. They possess the potential to
diagnose diseases with improved accuracy and speed by pro-
cessing and interpreting large volumes of patient data, such
as electronic health records and imaging results. Moreover,
LLMs can aid in treatment planning by suggesting potential
options based on the latest medical guidelines and patient-
specific information. Their ability to swiftly navigate exten-
sive medical literature also provides clinicians with essential
research, guidelines, and information, saving valuable time
and ensuring that medical treatments are grounded in current
knowledge. Table 1 showcases a few recent LLMs and their
key features and primary applications.
In medical research, LLMs serve as powerful tools for accel-
erating discovery. They can efficiently retrieve and organize
crucial information from the vast landscape of biomedical lit-
erature, enabling researchers to access and synthesize the lat-
est findings on specific drugs, diseases, or genes [4]. Initia-
tives like BioChatter [18], an open-source Python framework,
are making LLMs more accessible to biomedical researchers,
streamlining workflows for tasks such as data extraction and
analysis.
Drug discovery and development is also being significantly
impacted by LLMs. These models can predict the activity,
toxicity, and pharmacokinetic properties of new compounds,
facilitating early-stage drug screening and potentially short-
ening the drug development timeline [19, 20]. LLM-based
AI agents, capable of orchestrating complex research work-
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Table 1. Examples of Biomedical LLMs

Model Name Key Features Primary Applications Source
MediSwift Sparse pre-training on biomedical

text, computationally efficient
Information retrieval, question
answering, text generation in
biomedicine

Thangarasa et al. (2024) [8]

BioMedLM 2.7B parameter GPT model trained
on PubMed abstracts and full arti-
cles

Biomedical question answering Bolton et al. (2024) [9, 10]

BioMistral Open-source LLM tailored for the
biomedical domain

Various biomedical NLP tasks Labrak et al. (2024) [11]

CEHR-GPT Clinical text generation using pre-
training on medical text data

Automated report generation, clini-
cal documentation, discharge sum-
maries

Pang et al. (2024) [12, 13]

AlphaFold (AF2) Deep learning architecture for
protein structure prediction from
amino acid sequences

Predicting protein structures, accel-
erating drug discovery and func-
tional genomics

Jumper et al. (2021) [14–17]

flows and generating molecular design ideas, are emerging as
valuable assistants for researchers.
In genomics and proteomics, LLMs are proving instru-
mental in analyzing the intricate language of biological se-
quences. Models like DNABERT [21] and AlphaFold [14]
leverage the transformer architecture to predict functional re-
gions in DNA, understand RNA splicing, and predict pro-
tein structures with unprecedented accuracy. This capability
enhances our understanding of gene function, disease mech-
anisms, and facilitates the development of novel therapeu-
tics [15, 16, 22–24].
The analysis of electronic health records (EHRs) repre-
sents another significant application area for LLMs, which
can very quickly process and summarize vast amounts of in-
formation contained within EHRs, potentially improving care
continuity and decision-making [25–28]. Custom LLMs tai-
lored for healthcare language nuances can enhance the preci-
sion of clinical documentation and streamline the extraction
of pertinent information from voluminous datasets [27].
Furthermore, the advent of multimodal LLMs (MLLMs)
has expanded the possibilities by enabling the integration
of different data modalities, such as text and medical im-
ages [29–32]. This capability mirrors the way clinicians often
process information, potentially leading to more accurate di-
agnoses by analyzing both a patient’s written symptoms and
corresponding radiological images.

Limitations of Transformers and LLMs in
Biomedicine
Despite remarkable recent advancements, the application of
LLMs in biomedicine is accompanied by several inherent
limitations that must be carefully considered. Table 2 lists
these limitations and potential mitigation strategies that may
allow LLMs to be effective in Biomedicine.
One significant challenge arises when dealing with small
datasets. LLMs are data-intensive models, requiring vast
amounts of information to learn robust representations and
generalize effectively [33, 34]. Additionally, in biomedical
domains where data is scarce, such as in the study of rare
diseases or specialized clinical trials, LLMs may not perform

optimally. Overall, the limited scale and often lower quality
of available annotated biomedical datasets can hinder their
full potential.

Another critical concern is the phenomenon of hallucina-
tions, where LLMs generate incorrect or fabricated informa-
tion [35–37]. This tendency to produce non-factual content
poses a serious risk in medical applications where accuracy
is paramount for patient safety and treatment decisions. In
high-stakes areas like radiology, where precise interpretation
of medical language is crucial, hallucinations can be particu-
larly detrimental [31].

Bias and fairness represent another significant hurdle.
LLMs are trained on large datasets that may contain inher-
ent biases related to race, gender, socioeconomic status, and
other factors [38–41]. These biases can be reflected and even
amplified by the models, potentially leading to disparities
and inaccuracies in diagnoses and treatment recommenda-
tions for certain patient populations [39, 40].

The interpretability and explainability of LLMs also
present challenges. Often described as "black-box" models,
it can be difficult to understand the reasoning behind their
predictions [39]. This lack of transparency can hinder trust
and adoption in clinical settings where healthcare profession-
als require a clear understanding of the rationale behind sug-
gested diagnoses or treatment options.

The computational resources and infrastructure required
to train and deploy large LLMs can be substantial [4]. This
can be a barrier to their widespread implementation, particu-
larly in resource-constrained healthcare settings where access
to high-end hardware like GPUs may be limited [38].

Finally, privacy and security concerns are paramount when
dealing with sensitive patient data in healthcare [39]. Ensur-
ing the confidentiality and security of this information when
using LLMs, especially those hosted on external servers, re-
quires robust security protocols and strict adherence to pri-
vacy regulations like HIPAA.
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Table 2. Limitations of LLMs in Biomedicine

Limitation Description Potential Mitigation Strategies Relevant Sources
Small Datasets LLMs require large amounts of data to

train effectively and may struggle with
limited biomedical datasets.

Fine-tuning on domain-specific data,
data augmentation techniques, transfer
learning from larger models, leveraging
traditional ML methods for data-scarce
scenarios.

[33, 34]

Hallucinations LLMs can generate incorrect or fabri-
cated information, posing risks in med-
ical applications.

Retrieval-Augmented Generation
(RAG) to ground responses in re-
liable knowledge sources, prompt
engineering, fine-tuning with factual
data, developing methods to assess the
reliability of LLM outputs.

[35–37]

Bias and Fairness Biases in training data can lead to un-
fair or inaccurate predictions for certain
patient populations.

Careful curation of training data to en-
sure diversity and representation, bias
detection and correction techniques,
fairness-aware model training, contin-
uous monitoring of model outputs for
bias.

[38–41]

Lack of Interpretability The "black-box" nature of LLMs makes
it difficult to understand the reasoning
behind their predictions.

Development of Explainable AI (XAI)
methods for LLMs, using traditional
ML models for interpretable insights,
focusing on applications where inter-
pretability is less critical.

[39]

Computational Resource
Demands

Training and running large LLMs re-
quires significant computational power
and specialized hardware.

Development of more efficient LLM
architectures, using cloud-based com-
puting resources, focusing on smaller,
task-specific models where appropriate,
leveraging traditional ML for computa-
tionally lighter solutions.

[4, 38]

Privacy and Security Con-
cerns

Handling sensitive patient data with
LLMs raises concerns about data
breaches and compliance with privacy
regulations.

Implementing robust security protocols,
data anonymization techniques, using
privacy-preserving methods like feder-
ated learning, ensuring compliance with
regulations like HIPAA.

[39]

Advantages of Traditional Machine Learning
in Biomedical Contexts

While LLMs have garnered significant attention, traditional
machine learning methods continue to hold several advan-
tages, particularly in specific biomedical scenarios.
One key strength lies in their effectiveness with small
datasets. Unlike LLMs that thrive on massive amounts
of data, traditional ML algorithms such as decision trees,
support vector machines, and logistic regression can of-
ten achieve good performance with much smaller, well-
structured datasets. This makes them particularly suitable for
applications where data is limited, such as in rare disease re-
search or specialized clinical studies with a limited number
of participants.
Interpretability and explainability are another significant
advantage. Many traditional ML models, like decision trees
and linear regression, offer a clear understanding of how pre-
dictions are made. This transparency is crucial in biomedical
contexts where clinicians and researchers need to understand
the factors driving a particular prediction to validate its relia-
bility and build trust.
Traditional ML models generally have lower computational
requirements compared to LLMs. They can often be trained

and run efficiently on standard CPUs, making them more ac-
cessible and cost-effective for a wider range of institutions
and applications, especially in resource-limited settings.
The field of traditional machine learning boasts established
methodologies and a rich ecosystem of tools and libraries,
such as scikit-learn. Researchers and practitioners have a
wealth of experience and resources available for developing,
validating, and deploying these models in biomedical appli-
cations.
Furthermore, traditional ML methods are often well-suited
for specific types of tasks commonly encountered in
biomedicine. While LLMs excel at generative tasks and nat-
ural language understanding, traditional ML algorithms are
highly effective for prediction and classification tasks, such
as disease risk assessment, diagnostic prediction, and identi-
fying patterns in structured data.

Comparative Examples
Several studies have demonstrated scenarios where tra-
ditional machine learning methods outperform LLMs in
biomedical applications, particularly in clinical prediction
tasks. Research using electronic health record (EHR) data
from Vanderbilt University Medical Center and MIMIC-
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IV has shown that traditional ML models, such as gradi-
ent boosting trees, achieved substantially higher accuracy
(AUROC) and better calibration (Brier Score) in predict-
ing patient discharge compared to both GPT-3.5 and GPT-4,
even when using in-context learning [42, 43]. This suggests
that for certain well-defined prediction tasks with structured
data, traditional ML remains a more effective approach than
general-purpose LLMs.
Moreover, traditional ML has been shown to be more robust
to the generalization of demographic information for pri-
vacy protection [42, 43]. This indicates that when sensitive
demographic features need to be obscured or removed, tra-
ditional ML models may maintain better predictive perfor-
mance compared to LLMs.
LLMs, primarily trained on unstructured text data, have also
been observed to lag behind traditional ML methods in pre-
dicting outcomes from structured tabular data, which is a
common format in biomedical datasets containing numerical
measurements and clinical parameters [44]. Traditional ML
algorithms are specifically designed to learn patterns and re-
lationships within this type of data, giving them a potential
advantage.
Beyond clinical prediction, traditional ML methods like XG-
Boost [45, 46] and classical deep learning methods like con-
volutional neural networks (CNNs) [47, 48], recurrent neural
networks (RNNs) [49, 50] have a long and successful his-
tory in various other biomedical applications, including ge-
nomics, where they are used for tasks such as predicting the
type of different peptides, classifying cell types from single-
cell RNA sequencing data and identifying genetic variants.
While LLMs are increasingly being explored in genomics,
traditional ML remains a workhorse for many specific ana-
lytical tasks in this field.

Conclusion
Large language models have undoubtedly ushered in a trans-
formative era for biomedical AI, demonstrating remarkable
capabilities across a wide spectrum of applications, from
clinical decision support to drug discovery and genomic anal-
ysis. Their ability to process and generate human-like text
has opened up new avenues for understanding and interact-
ing with complex biomedical data. However, inherent lim-
itations such as challenges with small datasets, the risk of
hallucinations and bias, and issues with interpretability ne-
cessitate a nuanced perspective on their role. Traditional ma-
chine learning methods continue to offer significant advan-
tages, particularly in scenarios involving limited data, the
need for transparent decision-making, and specific predic-
tion or classification tasks. The evidence suggests that for
certain clinical prediction problems and the analysis of struc-
tured tabular data, traditional ML can still outperform even
advanced LLMs. The future of biomedical AI likely lies in
a synergistic approach, where the strengths of both LLMs
and traditional ML are leveraged to create more robust, re-
liable, and ethically sound solutions that ultimately benefit
human health. Ongoing research efforts aimed at mitigating
the limitations of LLMs in biomedicine hold the promise of

further expanding their utility, but for the foreseeable future,
traditional machine learning will continue to play a vital and
complementary role in advancing the field.

Bibliography
1. Kuo Zhang, Xiangbin Meng, Xiangyu Yan, Jiaming Ji, Jingqian Liu, Hua Xu, Heng Zhang,

Da Liu, Jingjia Wang, Xuliang Wang, Jun Gao, Yuan-geng-shuo Wang, Chunli Shao,
Wenyao Wang, Jiarong Li, Ming-Qi Zheng, Yaodong Yang, and Yi-Da Tang. Revolution-
izing health care: The transformative impact of large language models in medicine. J Med
Internet Res, 27:e59069, Jan 2025. ISSN 1438-8871. doi: 10.2196/59069.

2. Xiao-Huan Liu, Zhen-Hua Lu, Tao Wang, and Fei Liu. Large language models facilitating
modern molecular biology and novel drug development. Front Pharmacol, 15:1458739,
December 2024.

3. Milad Alucozai, Will Fondrie, and Megan Sperry. From data to drugs: The role of
artificial intelligence in drug discovery. https://wyss.harvard.edu/news/

from-data-to-drugs-the-role-of-artificial-intelligence-in-drug-discovery/,
Jan 2025. Accessed on: 2025-04-18.

4. Chong Wang, Mengyao Li, Junjun He, Zhongruo Wang, Erfan Darzi, Zan Chen, Jin Ye,
Tianbin Li, Yanzhou Su, Jing Ke, Kaili Qu, Shuxin Li, Yi Yu, Pietro Liò, Tianyun Wang,
Yu Guang Wang, and Yiqing Shen. A survey for large language models in biomedicine.
https://arxiv.org/abs/2409.00133, 2024.

5. Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017.

6. Ha Na Cho, Tae Joon Jun, Young-Hak Kim, Heejun Kang, Imjin Ahn, Hansle Gwon, Yunha
Kim, Jiahn Seo, Heejung Choi, Minkyoung Kim, Jiye Han, Gaeun Kee, Seohyun Park, and
Soyoung Ko. Task-specific transformer-based language models in health care: Scoping
review. JMIR Med Inform, 12:e49724, Nov 2024. ISSN 2291-9694. doi: 10.2196/49724.

7. Xiao-Huan Liu, Zhen-Hua Lu, Tao Wang, and Fei Liu. Large language models facilitating
modern molecular biology and novel drug development. Front Pharmacol, 15:1458739,
December 2024.

8. Vithursan Thangarasa, Mahmoud Salem, Shreyas Saxena, Chen-Yu Leong, Joel Hestness,
and Sean Lie. MediSwift: Efficient sparse pre-trained biomedical language models. In
Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Findings of the Association for
Computational Linguistics: ACL 2024, pages 214–230, Bangkok, Thailand, August 2024.
Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.14.

9. Elliot Bolton, Abhinav Venigalla, Michihiro Yasunaga, David Hall, Betty Xiong, Tony Lee,
Roxana Daneshjou, Jonathan Frankle, Percy Liang, Michael Carbin, and Christopher D.
Manning. Biomedlm: A 2.7b parameter language model trained on biomedical text. https:
//arxiv.org/abs/2403.18421, 2024.

10. Elliot Bolton, Betty Xiong, Vijaytha Muralidharan, Joel Schamroth, Vivek Muralidharan,
Christopher D. Manning, and Roxana Daneshjou. Assessing the potential of mid-sized
language models for clinical qa. https://arxiv.org/abs/2404.15894, 2024.

11. Yanis Labrak, Adrien Bazoge, Emmanuel Morin, Pierre-Antoine Gourraud, Mickael Rouvier,
and Richard Dufour. BioMistral: A collection of open-source pretrained large language
models for medical domains. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors,
Findings of the Association for Computational Linguistics: ACL 2024, pages 5848–5864,
Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
v1/2024.findings-acl.348.

12. Chao Pang, Xinzhuo Jiang, Krishna S. Kalluri, Matthew Spotnitz, RuiJun Chen, Adler Per-
otte, and Karthik Natarajan. Cehr-bert: Incorporating temporal information from structured
ehr data to improve prediction tasks. In Subhrajit Roy, Stephen Pfohl, Emma Rocheteau,
Girmaw Abebe Tadesse, Luis Oala, Fabian Falck, Yuyin Zhou, Liyue Shen, Ghada Zamzmi,
Purity Mugambi, Ayah Zirikly, Matthew B. A. McDermott, and Emily Alsentzer, editors, Pro-
ceedings of Machine Learning for Health, volume 158 of Proceedings of Machine Learning
Research, pages 239–260. PMLR, 04 Dec 2021.

13. Chao Pang, Xinzhuo Jiang, Nishanth Parameshwar Pavinkurve, Krishna S. Kalluri, Elise L.
Minto, Jason Patterson, Linying Zhang, George Hripcsak, Gamze Gürsoy, Noémie Elhadad,
and Karthik Natarajan. Cehr-gpt: Generating electronic health records with chronological
patient timelines. https://arxiv.org/abs/2402.04400, 2024.

14. John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska,
Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W Senior,
Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein struc-
ture prediction with AlphaFold. Nature, 596(7873):583–589, August 2021.

15. Letícia M. F. Bertoline, Angélica N. Lima, Jose E. Krieger, and Samantha K. Teixeira. Before
and after alphafold2: An overview of protein structure prediction. Frontiers in Bioinformatics,
Volume 3 - 2023, 2023. ISSN 2673-7647. doi: 10.3389/fbinf.2023.1120370.

16. Nazim Bouatta, Peter Sorger, and Mohammed AlQuraishi. Protein structure prediction by
AlphaFold2: are attention and symmetries all you need? Acta Crystallographica Section D,
77(8):982–991, Aug 2021. doi: 10.1107/S2059798321007531.

17. Thomas C Terwilliger, Dorothee Liebschner, Tristan I Croll, Christopher J Williams, Airlie J
McCoy, Billy K Poon, Pavel V Afonine, Robert D Oeffner, Jane S Richardson, Randy J Read,
and Paul D Adams. AlphaFold predictions are valuable hypotheses and accelerate but do
not replace experimental structure determination. Nat Methods, 21(1):110–116, November
2023.

18. Sebastian Lobentanzer, Shaohong Feng, Noah Bruderer, Andreas Maier, Adrián G Díaz,
Amy Strange, Anis Ismail, Anton Kulaga, Aurelien Dugourd, Barbara Zdrazil, Bastien Chas-

4 | arXiv Anastasiu | Biomedical AI in the Age of ChatGPT

https://wyss.harvard.edu/news/from-data-to-drugs-the-role-of-artificial-intelligence-in-drug-discovery/
https://wyss.harvard.edu/news/from-data-to-drugs-the-role-of-artificial-intelligence-in-drug-discovery/
https://arxiv.org/abs/2409.00133
https://arxiv.org/abs/2403.18421
https://arxiv.org/abs/2403.18421
https://arxiv.org/abs/2404.15894
https://arxiv.org/abs/2402.04400


sagnol, Cyril Pommier, Daniele Lucarelli, Ellen M McDonagh, Emma Verkinderen, Fer-
nando M Delgado-Chaves, Georg Fuellen, Hannah Sonntag, Jonatan Menger, Lionel Chris-
tiaen, Ludwig Geistlinger, Luna Zacharias Zetsche, Marlis Engelke, Megan McNutt, Melissa
Harrison, Melissa Hizli, Nikolai Usanov, Patrick Baracho, Sebastian Beier, Stefan Boeing,
Taru A Muranen, Trang T Le, Valeriia Dragan, Xiao-Ran Zhou, Yasmin Nielsen-Tehranchian,
Yuyao Song, Cankun Wang, Jan Baumbach, Jorge Abreu-Vicente, Nils Krehl, Qin Ma,
Thomas Lemberger, Julio Saez-Rodriguez, and The BioChatter Consortium. A platform
for the biomedical application of large language models. Nature Biotechnology, 43(2):166–
169, February 2025.

19. Bowen Gao, Yanwen Huang, Yiqiao Liu, Wenxuan Xie, Wei-Ying Ma, Ya-Qin Zhang, and
Yanyan Lan. Pharmagents: Building a virtual pharma with large language model agents.
https://arxiv.org/abs/2503.22164, 2025.

20. Xiao-Huan Liu, Zhen-Hua Lu, Tao Wang, and Fei Liu. Large language models facilitating
modern molecular biology and novel drug development. Front Pharmacol, 15:1458739,
December 2024.

21. Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidi-
rectional encoder representations from transformers model for dna-language in genome.
Bioinformatics, 37(15):2112–2120, 02 2021. ISSN 1367-4803. doi: 10.1093/bioinformatics/
btab083.

22. Wei Ruan, Yanjun Lyu, Jing Zhang, Jiazhang Cai, Peng Shu, Yang Ge, Yao Lu, Shang
Gao, Yue Wang, Peilong Wang, Lin Zhao, Tao Wang, Yufang Liu, Luyang Fang, Ziyu Liu,
Zhengliang Liu, Yiwei Li, Zihao Wu, Junhao Chen, Hanqi Jiang, Yi Pan, Zhenyuan Yang,
Jingyuan Chen, Shizhe Liang, Wei Zhang, Terry Ma, Yuan Dou, Jianli Zhang, Xinyu Gong,
Qi Gan, Yusong Zou, Zebang Chen, Yuanxin Qian, Shuo Yu, Jin Lu, Kenan Song, Xian-
qiao Wang, Andrea Sikora, Gang Li, Xiang Li, Quanzheng Li, Yingfeng Wang, Lu Zhang,
Yohannes Abate, Lifang He, Wenxuan Zhong, Rongjie Liu, Chao Huang, Wei Liu, Ye Shen,
Ping Ma, Hongtu Zhu, Yajun Yan, Dajiang Zhu, and Tianming Liu. Large language models
for bioinformatics. https://arxiv.org/abs/2501.06271, 2025.

23. Binghao Yan, Yunbi Nam, Lingyao Li, Rebecca A. Deek, Hongzhe Li, and Siyuan Ma. Re-
cent advances in deep learning and language models for studying the microbiome. Frontiers
in Genetics, Volume 15 - 2024, 2025. ISSN 1664-8021. doi: 10.3389/fgene.2024.1494474.

24. Oluwafemi A Sarumi and Dominik Heider. Large language models and their applications in
bioinformatics. Comput Struct Biotechnol J, 23:3498–3505, October 2024.

25. Maya Kruse, Shiyue Hu, Nicholas Derby, Yifu Wu, Samantha Stonbraker, Bingsheng Yao,
Dakuo Wang, Elizabeth Goldberg, and Yanjun Gao. Zero-shot large language models for
long clinical text summarization with temporal reasoning. https://arxiv.org/abs/

2501.18724, 2025.
26. Zhenbang Wu, Anant Dadu, Mike Nalls, Faraz Faghri, and Jimeng Sun. Instruction tuning

large language models to understand electronic health records. In A. Globerson, L. Mackey,
D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Advances in Neural
Information Processing Systems, volume 37, pages 54772–54786. Curran Associates, Inc.,
2024.

27. Sophia Adams. Natural language processing in electronic health records: Custom llm ap-
proaches. https://gaper.io/electronic-health-records-custom-llm/,
Feb 2024.

28. Liyan Tang, Zhaoyi Sun, Betina Idnay, Jordan G Nestor, Ali Soroush, Pierre A Elias, Ziyang
Xu, Ying Ding, Greg Durrett, Justin F Rousseau, Chunhua Weng, and Yifan Peng. Evaluat-
ing large language models on medical evidence summarization. npj Digital Medicine, 6(1):
158, August 2023.

29. Wan Hang Keith Chiu, Wei Sum Koel Ko, William Chi Shing Cho, Sin Yu Joanne Hui, Wing
Chi Lawrence Chan, and Michael D Kuo. Evaluating the diagnostic performance of large
language models on complex multimodal medical cases. J Med Internet Res, 26:e53724,
May 2024. ISSN 1438-8871. doi: 10.2196/53724.

30. Tianyu Han, Lisa C. Adams, Keno K. Bressem, Felix Busch, Sven Nebelung, and Daniel
Truhn. Comparative analysis of multimodal large language model performance on clinical
vignette questions. JAMA, 331(15):1320–1321, 04 2024. ISSN 0098-7484. doi: 10.1001/
jama.2023.27861.

31. Rajesh Bhayana. Chatbots and large language models in radiology: A practical primer for
clinical and research applications. Radiology, 310(1):e232756, 2024. doi: 10.1148/radiol.
232756. PMID: 38226883.

32. Marina Hayashida, Masataka Suzuki, Yosuke Nakata, Hiroko Kakita, and Hiroshi Eizawa.
Cardiac tamponade and duodenal hemorrhage caused by inappropriate use of dabigatran
in a patient with End-Stage renal failure: A case report. Cureus, 16(1):e52521, January
2024.

33. Xunxin Cai, Chengrui Wang, Qingqing Long, Yuanchun Zhou, and Meng Xiao. Knowledge
hierarchy guided biological-medical dataset distillation for domain llm training. https:

//arxiv.org/abs/2501.15108, 2025.
34. Deshiwei Zhang, Xiaojuan Xue, Peng Gao, Zhijuan Jin, Menghan Hu, Yue Wu, and Xiayang

Ying. A survey of datasets in medicine for large language models. Intelligence & Robotics,
4(4), 2024. ISSN 2770-3541. doi: 10.20517/ir.2024.27.

35. Dimitri Roustan and François Bastardot. The clinicians’ guide to large language models: A
general perspective with a focus on hallucinations. Interact J Med Res, 14:e59823, January
2025.

36. Sumera Anjum, Hanzhi Zhang, Wenjun Zhou, Eun Jin Paek, Xiaopeng Zhao, and Yunhe
Feng. Halo: Hallucination analysis and learning optimization to empower llms with retrieval-
augmented context for guided clinical decision making. https://arxiv.org/abs/

2409.10011, 2024.
37. Yubin Kim, Hyewon Jeong, Shen Chen, Shuyue Stella Li, Mingyu Lu, Kumail Alhamoud,

Jimin Mun, Cristina Grau, Minseok Jung, Rodrigo R Gameiro, et al. Medical hallucination in
foundation models and their impact on healthcare. medRxiv, pages 2025–02, 2025.

38. Kerstin Denecke, Richard May, and Octavio Rivera-Romero. Transformer models in health-
care: A survey and thematic analysis of potentials, shortcomings and risks. J Med Syst, 48
(1):23, February 2024.

39. Ehsan Ullah, Anil Parwani, Mirza Mansoor Baig, and Rajendra Singh. Challenges and
barriers of using large language models (LLM) such as ChatGPT for diagnostic medicine
with a focus on digital pathology - a recent scoping review. Diagn Pathol, 19(1):43, February

2024.
40. John J Hanna, Abdi D Wakene, Andrew O Johnson, Christoph U Lehmann, and Richard J

Medford. Assessing racial and ethnic bias in text generation by large language models
for health care–related tasks: Cross-sectional study. J Med Internet Res, 27:e57257, Mar
2025. ISSN 1438-8871. doi: 10.2196/57257.

41. Samuel Schmidgall, Carl Harris, Ime Essien, Daniel Olshvang, Tawsifur Rahman, Ji Woong
Kim, Rojin Ziaei, Jason Eshraghian, Peter Abadir, and Rama Chellappa. Evaluation and
mitigation of cognitive biases in medical language models. npj Digital Medicine, 7(1):295,
October 2024.

42. Katherine E Brown, Chao Yan, Zhuohang Li, Xinmeng Zhang, Benjamin X Collins, You
Chen, Ellen Wright Clayton, Murat Kantarcioglu, Yevgeniy Vorobeychik, and Bradley A Ma-
lin. Large language models are less effective at clinical prediction tasks than locally trained
machine learning models. Journal of the American Medical Informatics Association, page
ocaf038, 03 2025. ISSN 1527-974X. doi: 10.1093/jamia/ocaf038.

43. Katherine E. Brown, Chao Yan, Zhuohang Li, Xinmeng Zhang, Benjamin X. Collins, You
Chen, Ellen Wright Clayton, Murat Kantarcioglu, Yevgeniy Vorobeychik, and Bradley A. Ma-
lin. Not the models you are looking for: Traditional ml outperforms llms in clinical prediction
tasks. medRxiv, 2024. doi: 10.1101/2024.12.03.24318400.

44. Jiahuan Yan, Jintai Chen, Chaowen Hu, Bo Zheng, Yaojun Hu, Jimeng Sun, and Jian Wu.
Small models are llm knowledge triggers on medical tabular prediction, 2025.

45. Bipasa Bose, Taylor Downey, Anand K. Ramasubramanian, and David C. Anastasiu. Identi-
fication of distinct characteristics of antibiofilm peptides and prospection of diverse sources
for efficacious sequences. Frontiers in Microbiology, 12, 2022. ISSN 1664-302X.

46. Nivedha Balakrishnan, Rahul Katkar, Peter V. Pham, Taylor Downey, Prarthna Kashyap,
David C. Anastasiu, and Anand K. Ramasubramanian. Prospection of peptide inhibitors of
thrombin from diverse origins using a machine learning pipeline. Bioengineering, 10(11),
2023. ISSN 2306-5354.

47. Alex Whelan, Soham Phadke, and David C. Anastasiu. On-device prediction for chronic
kidney disease. In 2022 IEEE Global Humanitarian Technology Conference (GHTC), GHTC
2022, pages 325–332, 2022.

48. Alex Whelan, Ragwa Elsayed, Alessandro Bellofiore, and David C. Anastasiu. Selective
partitioned regression for accurate kidney health monitoring. Annals of Biomedical Engi-
neering, Feb 2024. ISSN 1573-9686.

49. Wardah S Alharbi and Mamoon Rashid. A review of deep learning applications in human
genomics using next-generation sequencing data. Human Genomics, 16(1SN - 1479-7364):
26, July 2022.

50. Nikesh Gyawali, Yangfan Hao, Guifang Lin, Jun Huang, Ravi Bika, Lidia Calderon Daza,
Huakun Zheng, Giovana Cruppe, Doina Caragea, David Cook, Barbara Valent, and
Sanzhen Liu. Using recurrent neural networks to detect supernumerary chromosomes in
fungal strains causing blast diseases. NAR Genomics and Bioinformatics, 6(3):lqae108, 08
2024. ISSN 2631-9268. doi: 10.1093/nargab/lqae108.

Anastasiu | Biomedical AI in the Age of ChatGPT arXiv | 5

https://arxiv.org/abs/2503.22164
https://arxiv.org/abs/2501.06271
https://arxiv.org/abs/2501.18724
https://arxiv.org/abs/2501.18724
https://gaper.io/electronic-health-records-custom-llm/
https://arxiv.org/abs/2501.15108
https://arxiv.org/abs/2501.15108
https://arxiv.org/abs/2409.10011
https://arxiv.org/abs/2409.10011

