A Data-Driven Approach for Detecting Autism Spectrum Disorders

Manika Kapoor
Computer Engineering
San José State University
manika.kapoor @sjsu.edu

Abstract— Autism spectrum disorders (ASDs) are a group
of conditions characterized by impairments in reciprocal social
interaction and by the presence of restricted and repetitive
behaviors. Current ASD detection mechanisms are either sub-
jective (survey-based) or focus only on responses to a single
stimulus. In this project, we develop machine learning methods
for predicting ASD and characterizing the type of stimuli
needed for its detection, based on electrocardiogram (ECG)
and skin conductance (SC) data collected during a sensory
challenge protocol (SCP) in which the reactions to eight stimuli
were observed from 25 children with ASD and 25 typically
developing children between 5 and 12 years of age. Each
protocol took 45-90 minutes, resulting in a long time series
containing approximately 2 million data points for each subject.
The length of the time series makes it difficult and costly to use
traditional machine learning algorithms to analyze them due to
the time and space constraints of these methods. As a result, we
developed feature processing techniques which allow efficient
analysis of these types of data. The results of our analysis of
the protocol time series confirmed our hypothesis that autistic
children are greatly affected by certain sensory stimulation.
Moreover, we analyzed the degree with which each stimulus
affects autistic children and devised a ensemble prediction
strategy that combines outcomes of individual stimuli for the
task of ASD prediction. Our ensemble model achieved 93.33%
accuracy, which is 13.33% higher than the best of 8 different
baseline models we tested. The results show that the feature
processing and ensemble techniques we developed are effective
tools for analyzing longitudinal ECG and SC time series and
can be successfully used to detect ASD in children.

Keywords: Autism Spectrum Disorders, large time
series, sensor data driven autism prediction, feature
extraction from time series, sensory challenge protocol

I. INTRODUCTION

Autism spectrum disorders (ASD) are a group of con-
ditions characterized by impairments in reciprocal social
interaction and communication and the presence of restricted
and repetitive behaviors. These neurodevelopmental disor-
ders do not have a cure, but their early detection increases the
chances of patients being able to develop coping mechanisms
that improve their ability to function in society [1]. Current
ASD detection mechanisms are focused on the observation of
a subject’s social interaction. The instruments used for such
assessments are lengthy and require extensive training, which
prevents them from being used on the overall population.
Before referring the subjects for further evaluation, they
are first identified as at-risk via a screening process which
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is sometimes not accurate [2]. The social responsiveness
scale (SRS) test, the most popular of such screening instru-
ments, was shown to only have 0.78 sensitivity and 0.67
specificity [3]. Recent work has identified autonomic and
behavioral responses of children with autism to be different
from those of typically developing (TD) children in response
to auditory [4], [5], [6] or visual stimuli [7], [8]. Activity
in the parasympathetic nervous system (PsNS), which is
measured by high frequency heart rate variability changes,
has also been shown to be a good indicator of the presence
of sensory modulation dysfunction (SMD) in children [9],
which can lead to similar behavioral markers as in autism.

Our research project utilizes longitudinal physiological
data collected from multiple sensors in response to a protocol
involving eight stimuli sequentially administered to a mixed
group of ASD and TD children. Electrocardiogram (ECG)
activity was collected at a frequency of 5S00Hz by placing
sensors on the child’s chest. ECG provides an index of
PsNS function. Galvanic skin response was measured at a
frequency of 40Hz by monitoring skin conductance (SC)
using sensors attached to the right hand of the subject. SC
provides an index of activity in the sympathetic nervous
system (SNS). The ECG and SC data were recorded using
a PsychLab machine, which encoded each raw signal as a
sequence of 500 integers for every second of the protocol.
Each protocol took approximately one hour to execute and
resulted in large amounts of time series data consisting of
millions of correlated values across the length of the protocol.

We need to consider the time component when analyzing
the sensor data resulting from the protocol, as it may provide
some discriminatory information. For instance, an autistic
subject may be affected by one stimulus and its residual
effect may be present during the administration of the next
stimulus. These correlations can be taken into account by
analyzing the data as a time series. Analyzing such large time
series is a challenging task, both in terms of the time and the
space requirements of the time series analysis methods. In
our research, we use different data preprocessing techniques
to transform the time series into a form which can be used
for efficient analysis and prediction.

We hypothesized that autistic children would be greatly
affected by certain sensory stimulation. While TD children
can quickly recover to a normal state after the sensory trial,
autistic children may be slower to return to normal. We
conducted experiments to test our hypothesis and analyzed



the degree with which each stimulus affects autistic children,
in general. We also developed predictive models for autism
detection from the ECG and SC response signals recorded
during the sensory trials.

II. LITERATURE REVIEW

Current ASD detection mechanisms are based on the
observation of a subject’s social interaction by either close
observers [2] or behavioral therapists [10]. The instruments
used for ASD assessment are often lengthy and require
extensive training before they can be administered and they
are also not very accurate [3].

Some researchers have argued that PsNS activity can be
used as an indicator for the presence of autism. Schaaf et
al. [9] studied PsNS activity during a sensory challenge
protocol (SCP) which included a baseline phase, adminis-
tration of stimuli in five sensory domains, a recovery phase,
and a final prolonged auditory stimulus phase. Laufer and
Nemeth [11] used SC to predict user action, based on a
neural network model, by collecting SC data while users
were playing an arcade game. Some researchers have also
utilized machine learning-based approaches to build predic-
tive models for the presence of autism. Changchun et al. [12]
designed a therapist-like support vector machine (SVM)-
based affective model as part of a computer-based ASD
intervention tool for children using physiological responses
that predicts autism with an accuracy of 82.9%.

Much of the existing research in the field of time series
analysis was relevant for this study. Dynamic time warping
(DTW) [13] is a technique used to compare two time-
dependent series that automatically accounts for time defor-
mations and different speeds. Muda et al. [14] used DTW to
create efficient voice recognition algorithms by doing direct
analysis and synthesis of voice signals. Juang [15] used
DTW hidden markov models, and linear predictive coding
techniques to develop speech recognition models. To opti-
mize DTW, Salvador and Chan introduced FastDTW [16],
which is an approximation of DTW with linear time and
space complexity and is thus comparatively fast. Hong and
Dhupia [17] analyzed vibration signals using FastDTW to
create more efficient algorithms that can characterize and lo-
calize local gearbox faults in automobiles. Mueen et al. have
introduced several variants of DTW, including constrained
DTW, multidimensional DTW and asynchronous DTW [18].

Piecewise linear approximation (PLA) is one of the most
common ways to process time series. It works by approxi-
mating a time series of length / with n straight lines using
different algorithms, such as the top-down, bottom-up and
sliding window approaches. Keogh at el. [19] developed a
sliding window and bottom-up algorithm as a means to derive
PLA and perform segmentation of time series.

Some methods represent time series using symbols, or
motifs, which are derived by identifying frequently occurring
patterns in the time series and replacing each pattern with
a symbol. Lonardi et al. introduced an algorithm, called
enumeration of motifs (EoM) [20], that uses matrix approx-
imation to efficiently locate repeated patterns in the time

series and match them by utilizing the algorithm, devised
by Shasha and Wang [21].Lin et al. introduced a more
scalable method, called symbolic aggregate approximation
(SAX) [22], which discretizes original time series data into
strings and defines distance measures on the symbolic string
representation. Looking for a way to characterize computer
usage evolution, Anastasiu et al. [23] devised an optimal
segmentation algorithm that segments users’ application-
level usage into varying length segments.

III. DATASET

Our research is based on examining existing data from
a study conducted by Dr. Megan C. Chang [4]. The data
were collected from various sensors during a SCP [9] in
which the reactions to multiple stimuli were observed from
25 children with ASD and 25 typically developing (TD)
children between 5 and 12 years of age. Each protocol took
45-90 minutes including preparation, and had three phases:
baseline, sensory challenge, and recovery. The baseline and
recovery periods lasted 3 minutes each and did not include
any stimulation. The sensory challenge consisted of six dif-
ferent sensory stimuli with a pseudorandom pause of 12—17
seconds between the stimuli. Each stimulus was administered
for 3 seconds and was presented at least 8 times. The
following are the six stimuli, listed in the order they were
administered:

« auditory — continuous sound tone of 84 decibels

« visual — 20W strobe light at 10Hz

« auditory — interrupted sound siren at 78 decibels

« olfactory — wintergreen oil passed under the nose

« tactile — touch along the jaw bone from the mandibular
angle on the right to the mandibular angle on the left
with a feather

« vestibular — chair tilted back to a 30 degree angle

Physiological ECG and SC data were continuously col-
lected from multiple sensors in response to the eight stimuli
(including the baseline and recovery periods). To obtain
an index of PsNS function, ECG activity was collected by
placing sensors on the child’s chest. To measure the SNS
activity, galvanic skin response was measured by attaching
sensors to the right hand of the child. The sweat glands
secrete more sweat as the subject becomes excited or ner-
vous, which in turn increases the skin conductance. The ECG
data and SC data were collected at a frequency of 500Hz
and 40Hz, respectively. This resulted in a very long time
series consisting of approximately 3 million correlated values
across the length of the series. Table I provides a description
of the dataset that was collected from the 50 subjects, which
we analyze in this thesis.

TABLE I
DATASET DESCRIPTION

# Autistic samples 25

# TD samples 25
Average # data points per subject 2,981,476
Average # data points per stimulus 372,682




Figure 1 shows an example of the ECG and SC data for a
subject in two different time spans of 2 and 10 seconds. The
left y-axis shows the ECG signal, measured in milli-Volts
(mV), and the right y-axis shows SC intensities, measured
in micro-Siemens ({Siemens).
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Fig. 1. Time series showing 2 seconds (top) and 10 seconds (bottom) of
ECG and SC signal for a subject (best viewed in color).

While Fig. 1 shows ECG and SC values in mV and
uSiemens, respectively, the primary data we analyzed is
encoded as 16 bit and 24 bit integers, respectively, by the
PsychLab machine that was used to record the signal during
the SCP. Transforming the primary data into their respective
units of measurement is achieved through a simple scaling
operation, noting that the machine captures ECG signs in
the 0 —2 mV range and SC signals in the 0 —20 uSiemens
range. The machine learning models we we describe in the
following sections used the primary data as input rather than
values in mV or pSiemens.

IV. HYPOTHESIS AND SUPPORTING EVIDENCE

We hypothesize that autistic children are greatly affected
by certain sensory stimulation and thus may take longer to
return to a normal state than TD children, who can quickly
recover to a normal state after the sensory trial. To test this,
we compared the sensory data recorded during an initial
baseline rest stage of the protocol, recorded prior to any
stimulus being administered, with data recorded during the
final recovery rest stage, 30 seconds after the final stimulus
was administered. No stimulus was administered during
either rest stage. For each subject, we compared the baseline
and recovery rest stages by computing the Euclidean DTW
distance of the ECG and SC time series recorded during
the rest periods. Euclidean DTW is a measure of distance
between two time-dependent sequences which is able to ac-
count for different series speeds and lengths. The distance is

calculated by doing many-to-one point comparisons between
the raw ECG and SC time series data.

To analyze the differences between the baseline/recovery
distances of autistic and TD children, we fit a Gaussian
probability distribution function (PDF) over the distances
between the baseline and recovery sensor time series data
for autistic and TD children. Fig. 2 shows these functions
for the ECG time series. Results show that autistic (solid
green line) children exhibit substantially greater differences
between their respective baseline and recovery phases than
TD children (dashed red line). The PDF means for autistic
and TD children were around 1.25e+9 and 9.07e+8 and their
standard deviations were 6.9e+8 and 4.03e+8, respectively.
Results suggest that TD children recover faster, which would
explain the shorter distances between the respective baseline
and recovery phase time series.

While these results support our hypothesis and indicate
that stimuli affect autistic children more than TD ones, the
remainder of the analysis tries to do two things:

« develop predictive models for autism detection from
the ECG and SC response signals recorded during the
sensory trials

o analyze the degree with which each stimulus affects
autistic children, in general
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Fig. 2. ECG Gaussian probability density functions of DTW distances

between the baseline and recovery stages for autistic and TD subjects.

V. METHODS

A list of abbreviations used throughout the rest of the work
is provided in the preamble of this thesis. We now present
several methods we devised for extracting features from
stimulus response time series data, and prediction models
we developed for detecting ASD in children. Furthermore,
we describe an analysis we conducted for determining the
degree with which each stimulus affects autistic children.

A. Feature Extraction

The time series data we are analyzing consist of millions
of data points. This poses a major challenge due to the high
time and space complexity of existing time series analysis
algorithms. As a means to improve analysis efficiency, we



propose to transform the data in a form that is represen-
tative of the raw time series data but has much smaller
dimensionality. We devised three different methods to extract
features that can be used to conduct specific experiments.
The following sections describe the details of the three
methods.

1) Equal Width Partitioning (EWP): As the input to our
methods is time series data, we needed to represent them in
a standard format that is uniform across all subjects. During
the SCP, a particular stimulus is administered in a specific
number of contiguous trials at equal intervals. Thus, we can
divide the data into sub-series and still capture the pattern
or trends in the time series.

In this approach, for each subject, the ECG and SC data
were first split into 8 parts representing the 8 stimuli. The
data were then standardized using the mean and standard
deviation of the baseline stage, i.e., the first of the 8 splits.
Since it is recorded prior to any stimulus being administered,
the baseline stage captures the normal ECG and SC signal for
a subject. After standardization, the data for each stimulus
are split into n equal parts. Fig. 3 shows the representation of
an SC time series using the EWP approach when n is equal
to 7. The time series was divided into 7 equal segments, sl
to s7.
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Fig. 3. Example of equal width partitioning of a time series where
sl, s2, ..., s7 represent the 7 equal segments.

As each stimulus was administered 8 sequential times
during the SCP, with an equal interval between trials, one
can split the data into n splits without losing any information.
After getting n splits for each stimulus, we used two different
approaches to encode the information in each split, as
discussed in the following sections.

a) Mean and standard deviation (MSD) representation:
In this approach, we represented the n splits for each stimulus
using the mean and standard deviation of the data in that
split. The final data vector consists of n ECG mean and
standard deviation values followed by n SC mean and
standard deviation values for each stimulus. For instance,
if the value of n is 3, then each stimulus will be split into 3
equal parts and then, for each split, the mean and standard
deviation will be computed, leading to 48, i.e., 8 x 3 x 2,

values in each of the ECG and SC vectors. This will generate
a data vector of 48 +48 = 96 values. Thus, the length of the
final data vector depends on the number of splits, n, and
not on the length of each of the time series. The higher the
number of splits, the higher the size of the final data vector
will be. We used the vectors obtained using this encoding
method to create different machine learning models for ASD
prediction in children. For each machine learning method we
tested, we created models based on vectors constructed using
only ECG data, only SC data, and using both data types.

Fig. 4 shows the ECG mean and standard deviation values
for a TD subject (dashed green line) and for an autistic
subject (solid red line) chosen at random. One can observe
that the ECG mean and standard deviation values of the
autistic subject are generally higher than those of the TD
subject. The maximum mean value for the autistic subject is
9.52 and that for the TD subject is 5.08.

b) Slope and intercept (SI) representation: We assume
that an autistic child gets more excited when a stimulus is
administered as compared to a TD child. When a subject
gets excited or nervous, his/her ECG values spike, showing
higher maximum and minimum values. Also, as the subject
becomes excited or nervous, his/her sweat glands secrete
more sweat, which in turn increases skin conductance. Thus,
we hypothesize that the trend and intensity of the signal
contains sensitive information that can be used to predict
ASD.

In this approach, we aim to capture the extreme (maximum
and minimum) values of the ECG and SC time series and
the rate at which they increase or decrease. To do so, we
represented ECG data using two different data vectors. For
each of the n splits and for each stimulus, we retrieved all
peak (maximum) values, denoted as ekg_p, and all valleys
(minimum) values in a cycle, which we denote by ekg_v. A
data point is considered a peak value if its value is greater
than the value of its neighboring data points. Moreover, a
data point is considered a valley if its value is lower than
the value of its neighboring data points.

After retrieving all ekg_p and ekg_v values in a time series,
we represented each split as the slope and intercept of the
best fit line (BFL) for both ekg_p and ekg_v. The slope of the
BLF captures the variation in trend and the intercept captures
the intensity of the signal.

SC values fluctuate less than ECG values do, in general.
Therefore, we represented the n splits for each stimulus with
the slope and intercept of the BFL over the entire SC time
series data in that split.

Fig. 5 shows the valley-based slope and intercept represen-
tation of the ECG time series, for a TD subject (dashed green
line) and for a subject with ASD (solid red line), chosen at
random. Time series data represented in these figures were
processed using n = 10.

Fig. 6 shows the slope and intercept representation for the
SC time series from the same subject as in Figure 5. One
can observe that the variation in slopes, especially for ECG
valley points and SC data, is higher for the autistic subject
as compared to the TD subject. Similar observations can be
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Fig. 4. Plot showing ECG mean (a) and standard deviation (b) values for a TD subject (dashed green line) and an autistic subject (solid red line), given

n =10.
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Fig. 5. Plot showing the valley-based slope (a) and intercept (b) representation of the ECG time series for a TD subject (dashed green line) and an autistic
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Fig. 6. Plot showing the slope (a) and intercept (b) representation of the SC time series for a TD subject (dashed green line) and an autistic subject (solid

red line), given n = 10.

seen in other autistic and TD subjects. SC data shows more
discriminatory characteristics, with autistic subjects showing
higher maximum and minimum slope values. We also plotted
the intercept representations for both the ECG and SC time
series in order to visualize the intensity of the signal. We
observed that the intensity of the signals (ECG and SC) is
much higher for autistic subjects as compared to TD subjects.

Similar to models we described in Section V-A.l.a, the
length of the considered SI vectors depends on the number
of splits, n. Given a specific value of n, we learned machine
learning models to predict autism in children using only ECG

data, only SC data, and both ECG and SC data encoded as SI
vectors. Note that, for the same value of n, the MSD and SI
vector representations of time series have the same number
of attributes.

2) Dynamic Time Warping (DTW): The approach we
devised in Section V-A.l transforms the real time series
data into a derived format, which may lead to some loss
of information. DTW allows us to compare two time series
in their raw format. As DTW automatically accounts for to
time deformations, it will identify similar patterns in two
time series even if one of them is longer than the other.



In this approach, we used DTW to compare the ECG or
SC time series between two subjects. First, we computed
the DTW Euclidean distance of every subject to every other
subject using both the SC and ECG series. After creating
the pairwise distance matrix, we used the k-nearest neighbor
(KNN) algorithm for classification. As this method works
on the original time series data, which contains more than
100,000 data points for each stimulus, it is slow and compu-
tationally expensive. To increase the speed of the process, we
employed a faster version of DTW, called FastDTW, which
is an approximation of DTW that has linear time and space
complexity [16].

We first conducted an experiment using the basic Fast-
DTW on each stimulus series. However, the experiment
could not complete as it ran out of memory on our very large
server with 24 GB of random access memory (RAM). The
way DTW distance is calculated requires the creation of a 2D
matrix of size I; X I, where /1 and I, are the lengths of the
time series being compared. In our case, this matrix would
occupy, on average, 100,000 x 100,000 x 8 bytes = 8 GB
of RAM. Some stimuli have much more than 100,000 data
points, leading to out-of-memory errors in executing the
algorithm. To address this issue, we split each stimulus into 8
splits, since each stimulus test was repeated 8 times for each
subject as part of the protocol. Since the gap between two
sequential applications of each stimulus varied between 12
and 19 seconds, as a way to approximate the location of the
break between splits, we created eight overlapping splits by
including % data points from the neighboring splits in each
split. For instance, if the second split had 1000 data points,
and r was 10%, then the number of extra data points from
the neighboring splits would be 0.1 x 1000. Fig. 7 shows an
example representation of the data using overlapping splits.
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Fig. 7. Example of splitting a time series into 5 overlapping splits.
After creating the splits, we computed pairwise FastDTW
distances between all the subjects. For a pair of query and
candidate subjects, eight different distances were computed
for each stimulus, between each of the 8 stimulus segments
in the query subject series and the corresponding segment
in the candidate series. We then used the maximum of
the eight distance values for the final distance between

the two subjects for that stimulus. The pairwise distances
were finally used to create a KNN-based machine learning
model to predict ASD. We also tried the efficient DTW
method introduced by Mueen et al. [18] and compared it with
FastDTW. While it was marginally faster than FastDTW, it
required more memory and most of our series could not be
computed on our server due to lack of available memory.

3) Symbolic Representation of Time Series: In this ap-
proach, we used SAX [22] to represent each of the time
series using a SAX vector with a given number of symbols
and segments. To get the best representation, we tested with
numbers of symbols in the range 2 to 10 and numbers of
segments from 2 to 14, in increments of 1. After representing
the time series using SAX, we computed pairwise Euclidean
DTW distances. These distances were then used to create a
KNN-based machine learning classification model to predict
autism in children.

B. Developing Prediction Models for Autism Detection

1) Base Models: In our experiments, we aim to classify
the subject as either Autistic or TD. To perform this binary
classification, we trained and tested models based on the
following algorithms:

o decision tree (DT) [24]

o k-nearest neighbor (KNN) [25]

o support vector machine (SVM) [26]
« naive Bayes (NB) [27]

« random forest (RF) [28]

« XGBoost (XGB) [29]

o DTW-based KNN (DTW-KNN)

o SAX-based KNN (S-KNN)

The first six models consume the features generated using
methods specified in Section V-A.l. Separate models were
created using the MSD and SI feature generation approaches
mentioned in Sections V-A.l.a and V-A.l.b, respectively.

We refer to the DTW-KNN and S-KNN models as the
standard time series models, as these models use standard
time series analysis algorithms. The DTW-KNN model is
based on the method described in Section V-A.2, which
utilizes the raw time series for comparison and prediction.
The S-KNN model is based on the method described in
Section V-A.3, which first transforms the raw time series
data into its SAX representation before computing pairwise
Euclidean DTW distances between the subjects. Different
hyper-parameters were tuned for each model to obtain the
best results. For measuring the effectiveness of a model, we
measured its accuracy in a 10-fold cross-validation scenario.
The dataset was randomly split into 10 folds with 5 folds
containing 6 samples each and 5 folds containing 4 samples
each, such that each fold contained an equal number of
randomly selected autistic and TD samples.

As we have both ECG and SC data, we wanted to un-
derstand how different physiological data help in predicting
autism. Thus, we create different models either using only
ECG data, or only SC data, or both ECG and SC data.



2) Ensemble Models: In Section V-B.1, we executed
experiments for each separate stimulus. After building the
separate models for all stimuli, we combined them to build
ensemble models and make additional predictions. We used
three different approaches to create ensemble models.

a) Majority vote: In this approach, we combined the
predictions from all the models for different stimuli and
chose the majority predicted class as the final prediction. All
the model outputs were given the same weight. For instance,
for a subject T, if 3 out of 8 models predicted T to be autistic,
then the final predicted class would be TD. In the case of
an equal number of votes for each class, the final predicted
class was randomly chosen.

b) Weighted prediction: n this approach, instead of
giving the same weight to all the model outputs, we weighed
the classification output of each stimulus model with the
prediction confidence of its associated model, which ranges
between 0 and 1. Considering a vector w. of weights
associated with each stimulus and the vector y representing
classification predictions of models associated with each
stimulus, we compute the final prediction as the linear
combination of vectors w, and y, y. = w.'y. The vector y
contains the predicted classes, +1 or -1, representing TD and
autistic subjects, respectively. A negative y. prediction value
indicates that the models predicted the subject as autistic
with higher confidence.

c) Stochastic gradient descent (SGD): In this approach,
instead of using the prediction confidence scores from sep-
arate stimuli models as weights, as described in Section V-
B.2.b, we learned the contribution of each stimulus towards
predicting autism. Some stimuli may contribute in a posi-
tively towards correct prediction, while others may contribute
negatively.

This can be done by deriving a set of weights such that
the linear combination of the weight vector and predictions
from different stimulus models results in an accurate binary
classification of autistic and TD children. The weight vector
W, is learned via the SGD algorithm applied to training set
predictions. Then, the stimuli predictions in the test set are
combined linearly with the weights to generate the final SGD
predictions for test samples, computed as ys = WSTyS.

C. Degree of Influence of Each Stimulus on Autistic Children

One of our goals was to find the impact of different stimuli
on autistic children and how much each stimulus contributes
towards predicting autism in children. This would be useful
towards filtering out the less important stimuli in order to
simplify the SCP.

To infer the stimulus weights, we first saved all the
predictions from all of the individual stimulus prediction
models in all 10 folds of our evaluation protocol. We use
all of these predictions, along with the true class of all
the samples in the entire dataset, to learn inference SGD
weights. These weights capture the relationship between the
predicted values of each stimulus model and the class for
the subject, thus explaining the importance of the stimulus in
the prediction. A positive value of the weight for a stimulus

shows that it contributes in a positive way towards the correct
prediction, and vice versa.

VI. EXPERIMENT DESIGN
A. Performance Measure

We used accuracy as the performance measure when
comparing the prediction models. Accuracy is an appropriate
evaluation metric in our setting, as the dataset contains an
equal number of samples for both autistic and TD subjects.

It is defined as
T,
A== x100,
T,

N
where T, represents the total number of correct predictions
and T; represents the total number of subjects.

B. Efficiency Measure

For comparing the efficiency of different methods, we
measure the training and prediction time, in seconds, for each
of the different models. Prediction time is given priority over
training time, as training can be done offline but prediction
must be executed online, in real time, and thus needs to be
fast.

C. Execution Environment

We conducted experiments on a computing system
equipped with an Intel(R) Xeon(R) E5-2695 v3 CPU with
8 cores, each at 2.30 GHz, and equipped with 24 GB
RAM. The prediction models were implemented in Python
using the scikit-learn and scipy packages. The DTW-based
experiments and SAX-based experiments were conducted
using the fastdtw and tslearn Python packages, respectively.

D. General Data Preprocessing

The dataset consists of the ECG and SC data for each
subject, along with protocol event data that can be used
to accurately split the time series based on stimulus. After
obtaining a different time series for each stimulus, we
cleaned the data by removing spurious values, such as ECG
data with values of 0.

E. Model Hyper-Parameters

Different hyper-parameters were tuned for each model,
details for which are specified below:

o Decision tree (DT). We tested different choices for the
criterion parameter, namely gini and entropy, and for
the splitter parameter, namely best and random. We also
tested values of min_samples_split and max_depth in the
range 1 to 5 and 2 to 6, respectively, to determine the
best performance.

o K-nearest neighbors (KNN). For the KNN model, the
only hyper-parameter tuned was k, which represents the
number of most similar samples considered to classify
a query sample. We tested values of k between 1 and
14 inclusive, in increments of 1.

« Support vector machine (SVM). To get the best results,
we tested SVM with all kernel types, namely linear,
poly, rbf and sigmoid, and C values varying from 1 to



1000, in steps of 10. Apart from these, we also tested
degree values in the range 2 to 6 for the poly kernel and
gamma values of le—3 and le—4 for the rbf kernel.

« Random forest (RF). As RF is an ensemble model
using DT, most of its parameters are the same as
for DT. We tested different values for the criterion,
splitter, max_depth and min_samples_split parameters, as
mentioned earlier. Apart from these parameters, we also
tuned the n_estimators parameter, testing values in the
range 1 to 11, in increments of 1.

o« XGBoost (XGB). We tested different booster choices,
including gbtree and gblinear, along with differ-
ent eval_metric choices, such as logloss and error.
Apart from these parameters, we also tuned the
min_child_weight and max_depth parameters using val-
ues in the range 1 to 5 and 3 to 10, respectively, in
increments of 1.

e DTW-based KNN (DTW-KNN). As any other KNN
model, the only hyper-parameter tuned was k, which
represents the number of most similar samples consid-
ered to classify a query sample. We tested values of k
between 1 and 30, inclusive, in increments of 1.

e SAX-based KNN model (S-KNN). We tested values
for the numbers of symbols parameter in the range
2 to 10 and for the numbers of segments parameter
from 2 to 14 when transforming the time series into its
SAX representation. Then, we tuned the KNN hyper-
parameter k, testing values between 1 and 30, inclusive,
in increments of 1.

VII. RESULTS AND DISCUSSION

A. Effectiveness Results

1) Base Models: We created eight different models, as
described in Section V-B, one for each of the eight stimuli.
The first six models, namely, DT, KNN, SVM, NB, RF
and XGB, were built using the features extracted based
on the two approaches mentioned in the EWP method
described in Section V-A.l1, which splits the time series
into a specified number of sections. We created different
dataset representations with number of splits, n, ranging
from 2 to 13, inclusive. For each value of n, after further
splitting the training set into training and validation subsets,
we trained different instances of all the six models using
different combinations of hyper-parameters. Then, we chose
the best model instance (i.e., specific hyper-parameter val-
ues as described in Section VI-E) based on its validation
accuracy. Finally, we re-trained the best model for each
algorithm using the chosen best hyper-parameters and the
entire original training set.

The DTW-KNN model utilizes the features extracted using
the DTW approach mentioned in Section V-A.2, which
computes the Euclidean DTW distance between different
subjects. Higher distance values imply lower similarity, and
vice versa. For creating the overlapping splits, we chose
r = 10%. The S-KNN model was then built using the SAX
feature construction method described in Section V-A.3.

Fig. 8 shows the comparison of the best performing model
instances for different algorithms, created using different
feature extraction methods and using baseline stage data.
We observed that, in almost all cases, the models created
using SI features perform better than those created using
MSD features. Also, among the two standard time series
approaches, the models created using SAX features (S-KNN)
perform much better as compared to those based on DTW
distances (DTW-KNN).
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Fig. 8. Comparison of the best base models for the auditory (tones) stage.
The description of the methods being compared can be found in Section V-
B.1.

Table II shows the accuracy scores of the best models
for each stimulus. Auditory (tones) and visual stimuli data
result in the best performing models, with an accuracy of
80.00% (highlighted in bold). We also observed that two of
the best performing models utilize both ECG and SC data
for making predictions, showing that both types of sensor
data are important in predicting autism.

TABLE 11
BEST BASE MODEL ACCURACY VALUES USING EACH STIMULUS

Accuracy(%)  Model Data Used
Baseline 75.83 SAXNN SC
Auditory (Tones) 80.00 SVM Both
Visual 80.00 XGB SC
Auditory (Siren) 77.50 RF ECG
Olfactory 77.50 SAXNN SC
Tactile 74.17 SAXNN SC
Vestibular 78.33 RF Both
Recovery 73.33 SAXNN Both

2) Ensemble Models: We combined the results from the
models generated using different stimuli, presented in Sec-
tion VII-A.1, to create ensemble models. We compared the
accuracy of the ensemble models with the best base models.
Ensemble models were created using the three approaches
described in Section V-B.2.

Fig. 9 shows the comparison of the best SGD ensem-
ble models. We observed that models constructed from SI
features outperformed those using MSD ones in almost all
cases. The best performing model using SI features is an
SGD ensemble XGB model that achieved in an accuracy



of 93.33%, which is 7.50% higher than the best performing
model using MSD features.
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Fig. 9. Comparison of the best SGD ensemble models. The description of
the methods being compared can be found in Section V-B.1.

As SI features performed better than the MSD ones,
further comparisons with DTW and SAX-based approaches
were done using only SI features. As mentioned in Sec-
tions V-A.2 and V-A.3, both DTW and SAX-based models
are KNN models. Table III shows the best model accura-
cies for the different tested data processing and modeling
methods. One can observe that all the models give the
best accuracy using the SGD ensemble method. In this
ensemble approach, as described in Section V-B.2.c, the SGD
algorithm is applied on the training set to learn the weights of
each stimulus towards making correct predictions. Different
models had different weights for each stimulus.

TABLE III
BEST ENSEMBLE MODEL ACCURACY VALUES

Accuracy(%) Ensemble Type  Data Used

DT 92.50 SGD Both
KNN 81.67 SGD SC

SVM 87.50 SGD Both
NB 88.33 SGD SC

RF 89.17 SGD Both
XGB 93.33 SGD Both
DTWNN 77.50 SGD Both
SAXNN 92.50 SGD ECG

The best performing model was the SGD ensemble XGB
model, built using both ECG and SC data, which resulted in
an accuracy of 93.33%. The value is approximately 4.16%
greater than that achieved using either the majority vote or
weighted prediction vote ensemble methods. This model was
built using both ECG and SC data.

As the best accuracy is achieved using both ECG and SC
data, we can infer that both types of sensors are important
in accurately predicting autism. Additionally, we observed
that the next best performing models were DT and S-KNN,
which were built using either only ECG data or both ECG
and SC data This further highlights the importance of ECG
data in predicting autism in children. In comparison to the

best performing base model, the ensemble models performed
much better in general. The best performing ensemble model
(93.33%) had an accuracy that was approximately 13.33%
higher than the best performing base model (80.00%). Even
ensemble models built using majority vote (89.17%) and
weighted prediction (89.17%) decisions performed better
than the base models.

Even though DTW is an important metric for comparing
time series, we observed that classification models based
on DTW failed to outperform other classification models in
our problem. The best accuracy achieved by the DTW-KNN
models was 77.50%, which is approximately 18% lower than
that of the best performing model.

B. Efficiency Results

We measured the efficiency of the models based on the
time taken to train and perform predictions. Fig. 10 shows
the comparison of natural log transformed training and
prediction times, in seconds. The log scaling in the figure
is necessary due to the very wide range of values, which
would otherwise hide most results in the graph.

The best performing model in terms of accuracy was the
XGB model, which was the third slowest method, taking
approximately 49,300 seconds to train and 1.23e—4 seconds
to predict. On the other hand, the DTW-based model took
approximately 4.40 times longer to train and 108 times longer
to predict in comparison to the S-KNN model. The high
execution time for training and prediction makes it difficult
to utilize DTW-based models in real-world applications. On
the other hand, the DT model achieved the second highest
accuracy (92.50%) and predicts 7 times faster than the best
performing XGB model.

C. Inference Results

Before studying the effect of each stimulus on autistic
children, we also studied the results achieved without using
any stimuli. This refers to the performance of the models
built on the data collected during the baseline stage of
the SCP. Our assumption was that sensor data generated
as a result of stimulus application help in highlighting the
difference between autistic and TD subjects. To verify this
assumption, we compared the accuracy of the models built
using only the baseline stage data with that of the ensemble
models built in Section VII-A.2, the results of which are
shown in Table IV. We observed that, in all cases, the
accuracy using the baseline stage models is much lower than
that of the models using a combination of stimuli, which
supports our assumption. The best accuracy achieved by the
best ensemble model is 93.33%, which is 17.5% higher than
the one achieved using only data from the baseline stage
(75.83%).

To study the effect of each stimulus, we learned the
weights of an SGD model using the entire dataset, as
discussed in Section V-C. We performed this experiment
using the classification method that achieved the highest
accuracy, i.e., XGB. We observed that the model resulted in
different weights for each stimulus. These weights provide
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Fig. 10. Comparison of training time (left) and prediction time (right) for all methods.

TABLE IV
ACCURACY COMPARISON OF THE BASELINE STAGE MODELS AND THE
BEST ENSEMBLE MODELS

Baseline Stage  Ensemble Model

DT 72.50 92.50
KNN 70.83 81.67
SVM 69.16 87.50
NB 72.50 88.33
RF 72.50 89.17
XGB 74.17 93.33
DTW-KNN 63.33 77.50
S-KNN 75.83 92.50

an idea of how important a stimulus is to predict autism. The
higher the weight of a stimulus, the higher its contribution
is towards accurately predicting autism in children.

Fig. 11 shows the weights learned by the best performing
XGB model. One can observe that the XGB model gives
very high weights for the auditory (tones), visual, olfactory,
tactile, and recovery stages.
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Fig. 11.  Stimuli weights for the best performing XGB model.

VIII. FUTURE WORK

In the future, we plan to work on developing additional
time series-based analysis techniques for predicting autism
in children. Similar to models developed by Anastasiu et al.
for characterizing computer usage evolution [30], our models

will characterize the SNS and PsNS changes over the time
of the SCP. In these time series models, an unsupervised
optimization procedure will be used to automatically identify
prototypical SNS and PsNS states (protos). This procedure
seeks to minimize the approximation error of representing
the original time series as a sequence of protos. Then,
nearest neighbor classification models can be built using this
proto sequence representation, which may lead to a greater
prediction accuracy by ignoring noise in the data and may
provide invaluable insights into common states for ASD and
TD children.

IX. CONCLUSIONS

In this thesis, we described novel techniques we developed
for analyzing very large time series of ECG and SC sensor
data derived from a sensory trial administered to 50 autistic
and TD children. Our analysis showed that autistic children
are affected to a higher degree by some stimuli as compared
to TD children and take longer to recover. Moreover, the
feature extraction methods we developed were both effective
and efficient in analyzing multivariate time series with over
2 million values. A KNN model built using SAX features we
extracted from both SC and ECG time series performed quite
well when classifying subjects as autistic or TD, achieving an
accuracy of 93.33%. We also observed that some stimuli are
more significant than others in predicting autism in children.
Inference of an ensemble model based on the best performing
classifier in our experiments showed increased reliance on
the auditory (tones), visual, olfactory, tactile, and recovery
stimuli time series.

An XGB-based model trained on vectors constructed using
a feature engineering method we developed (SI) achieved
the best performance (93.33% accuracy) taking only a mil-
lisecond to predict samples. While DTW is one of the best
approaches to compare time series data in general, it does
not perform well when working with very large time series
data as the ones in our experiments. Models built using DTW
were computationally very expensive, taking 4.4 times longer
to train and 108 times longer to predict as compared to the
best model in our experiments.
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