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Abstract

The nearest neighbor graph is an important structure in many data mining methods for clustering, advertising, recommender
systems, and outlier detection. Constructing the graph requires computing up to n2 similarities for a set of n objects. This high
complexity has led researchers to seek approximate methods, which find many but not all of the nearest neighbors. In contrast, we
leverage shared memory parallelism and recent advances in similarity joins to solve the problem exactly. Our method considers
all pairs of potential neighbors but quickly filters pairs that could not be a part of the nearest neighbor graph, based on similarity
upper bound estimates. The filtering is data dependent and not easily predicted, which poses load balance challenges in parallel
execution. We evaluated our methods on several real-world datasets and found they work up to two orders of magnitude faster than
existing methods, display linear strong scaling characteristics, and incur less than 1% load imbalance during filtering.

Keywords: similarity search, neighborhood graph construction, bounded similarity graph, cosine similarity, all-pairs, nearest
neighbors, shared memory parallel

1. Introduction

Computing the nearest neighbor graph (NNG), or similarity
graph, for a set of objects is a common task in many data analy-
sis tasks, including clustering [13, 26], online advertising [35],
recommender systems [17], data cleaning [7, 45], and query
refinement [11, 41]. For example, effective clustering meth-
ods [47] have been devised that work by partitioning the near-
est neighbor graph of a set of objects. In the recommender sys-
tems domain, item-based nearest neighbor collaborative filter-
ing algorithms derive recommendations (e.g., books or movies)
from the k most similar items to each of the user’s preferred
items [30]. Moreover, state-of-the-art online advertising [35]
and recommender systems [15, 16, 36] methods rely on an ini-
tially computed NNG to guide the discovery of the latent factor
models used for recommendation.

Often, real-world objects are depicted as vectors in a high-
dimensional feature space, each dimension quantifying a rele-
vant attribute of the object. Similarity between objects is then
computed as a function of their feature vectors. In this work,
we focus on objects represented as sparse non-negative vectors
and compute the proximity between two objects as the cosine
similarity of their vector representations. Sparse non-negative
vectors have been successfully used for decades in many mining
tasks. As a few examples, they are the standard way to encode
document collections in preparation for search [34] or text min-
ing [28], user ratings or purchase history in recommender sys-
tems [30], and are often used to depict the structure of chemical
compounds [44].
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Given a set of n objects D = {d1, d2, . . . , dn}, the NNG
G = (V,E) is a directed graph which consists of a vertex set
V , corresponding to the objects in D, and an edge for each pair
(vi, vj) when the ith and jth objects are neighbors. In most
problems, the neighbors of interest are those with close connec-
tions, which has given rise to two important problems that we
study in this article. The all-pairs similarity search (APSS) or ε-
NNG construction problem finds, for each object in the set, all
other objects with a similarity value above a certain threshold
ε. On the other hand, the k-NNG construction problem seeks
to find the k closest neighbors to each object in the set D, i.e.
those objects j, j 6= i, with highest similarity sim(di, dj).

A naı̈ve approach to construct the NNG executes O(n2) ob-
ject comparisons. Despite many existing works on the subject,
efficient NNG construction algorithms addressing high dimen-
sional sparse data are still being actively researched. In two re-
cent works [3, 4], we introduced L2AP and L2Knng, two serial
methods that efficiently construct the exact ε-NNG and k-NNG,
respectively, by ignoring unimportant object pair comparisons.
For each object in D, our methods consider all other objects as
potential neighbors. However, most objects that are not one of
the desired nearest neighbors are pruned (removed from con-
sideration) without fully computing their similarity.

The two methods share a similar filtering strategy. For a
given query object, a potential neighbor, which we call the can-
didate object, can be pruned if an upper bound of its similarity
with the query object is smaller than ε (for L2AP) or than the
minimum similarity value among any of the k closest currently
known neighbors of the query (for L2Knng). Given its reliance
on minimum neighborhood similarities, as a way to boost its
pruning effectiveness, L2Knng first identifies, for each object, k
similar objects that may not be its nearest neighbors. We pro-
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posed L2Knng-a1 for this task, a fast approximate graph con-
struction method that we showed achieves high recall in less
time than other state-of-the-art methods [4].

Unlike our two previous works, the focus of this article is
on cosine similarity ε-NNG and k-NNG construction in the
shared memory parallel setting. The filtering performed dur-
ing the construction is data dependent and not easily predicted,
which poses load balance challenges in this context. Further-
more, marshaling neighborhood updates may cause contention
in both the initial approximate graph construction and the filter-
ing phases of L2Knng. We design novel shared memory parallel
algorithms for the ε-NNG and k-NNG construction problems
which use a number of cache-tiling optimizations, combined
with fine-grained dynamically balanced parallel tasks, to con-
struct graphs up to two orders of magnitude faster than existing
methods. Our methods display linear strong scaling character-
istics and incur less than 1% load imbalance during filtering.
Specifically, our parallel ε-NNG construction method, pL2AP,
solves the APSS problem, using 24 threads, 5.4x–231.6x faster
than the best parallel baseline and 12.3x–33.9x faster than the
fastest serial method on datasets with hundreds of millions of
non-zeros. Using 16 threads, our approximate k-NNG con-
struction method, pL2Knng-a, is 1.5x – 21.7x more efficient
than the best approximate state-of-the-art baseline, and our ex-
act variant, pL2Knng, achieves 3.0x – 12.9x speedup over an
efficient exact baseline.

Please note that the current paper is a consolidated and ex-
tended version of two previous workshop papers we presented
at the Irregular Applications: Architectures and Algorithms
workshop in 2015–2016, namely [5] and [6]. The article is self-
contained and significantly improves upon the initial published
papers. Specifically, we have made the following enhance-
ments: (i) we present a unified description of our two filtering-
based algorithms for shared memory nearest neighbor graph
construction, pointing out the filtering criteria differences be-
tween the two methods; (ii) we extended the presentation of our
serial L2AP method, clarifying the filtering differences between
it and a competing method, APT; (iii) we improved the pre-
sentation of our serial L2Knng method and of the query vector
mask-hashing technique in pL2AP; (iv) we greatly expanded our
experimental evaluation of both pL2AP and pL2Knng, adding
or extending the discussion on nine different experiments; and
(v) we added a discussion section that highlights strengths and
challenges in our parallel cosine similarity graph construction
methods.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the problem and notation used throughout the
paper. We start our algorithmic presentation by first giving an
overview of the serial algorithms in Section 3, which will clar-
ify the presentation of our parallel methods in Section 4. Along
the way, in Section 3.2, we will also introduce some enhance-
ments over our initial serial k-NNG construction method that
led to 1.5x efficiency improvement. We describe our evaluation
methodology and analyze experimental results in Sections 5

1The method is called L2KnngApprox in [4].

and 6. Section 7 summarizes related works, and Section 8 con-
cludes the paper.

2. Definition & notations

We adopt a similar notation as in our earlier work [4]. Let di
denote the ith of n objects in D, di ∈ Rm denote the feature
vector in m-dimensional Euclidean space associated with the
ith object, and di,j the value (or weight) of the jth feature of
object di. We measure vector similarity via the cosine function,

cos(di,dj) =

∑m
l=1 di,l × dj,l
||di||2 × ||dj ||2

.

Since cosine similarity is invariant to changes in the length of
vectors, we assume that all vectors have been scaled to be of
unit length (||di|| = 1,∀di ∈ D). Given that, the cosine be-
tween two vectors di and dj is simply their dot-product, which
we denote by

〈
di,dj

〉
. This not only simplifies the presentation

of the algorithm but also reduces the number of floating point
operations needed to solve the problem at hand.

The neighborhood of an object di in D, denoted by Γdi , is
the set of objects in D \ {di} whose similarity with di is the
highest among all objects in D \ {di}. The NNG of D is a
directed graph G = (V,E) where vertices correspond to the
objects and an edge (vi, vj) indicates that the jth object is in the
neighborhood of the ith object. We are interested in two specific
NNGs. The ε-NNG restricts the neighborhood of each object di
to only those objects dj with a similarity sim(di, dj) ≥ ε. The
k-NNG restricts the neighborhood of di to the k most similar
objects to di. An approximate k-NNG is one in which the k
neighbors of each vertex do not necessarily correspond to the k
most similar objects.

We denote by the minimum (neighborhood) similarity σdi the
minimum similarity between object di and one of its current k
neighbors. We say that a neighborhood is improved when its
minimum similarity σdi increases in value, and it is complete
once all correct neighbors that belong to a neighborhood have
been added to it. Given sparse vectors, it is possible that an ob-
ject dj may have less than k possible neighbors, as we ignore all
null similarities and dj may have non-zero features in common
with less than k other objects in D. In this case, by convention,
the σdj value of its neighborhood is the minimum among all
similarities in its neighborhood, and its neighborhood is com-
plete.

An inverted index representation of D is a set of m lists,
I = {I1, I2, . . . , Im}, one for each feature, containing pairs
(di, di,j), where di is an indexed object that has a non-zero
value for feature j and di,j is that value. The index may store
additional information, such as the position of the feature in the
given document or other statistics.

Given a vector dq and a dimension j, we will denote by
d≤jq the vector obtained by keeping the j leading dimen-
sions in dq , (dq,1, . . . , dq,j , 0, . . . , 0), which we call the (in-
clusive) prefix (vector) of dq . Similarly, we refer to d>jq =
(0, . . . , 0, dq,j+1, . . . , dq,m) as the (exclusive) suffix of dq , ob-
tained by setting the first j dimensions of dq to 0. The exclusive
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prefix d<jq and inclusive suffix d≥jq are analogously defined.
One can then verify that

dq = d≤jq + d>jq ,

||dq||2 = ||d≤jq ||
2

+ ||d>jq ||
2
, and〈

dc,dq

〉
=
〈
dc,d

≤j
q

〉
+
〈
dc,d

>j
q

〉
.

Table 1 provides a summary of notation used in this work.

Table 1: Notation used throughout the work.
Description

D set of objects
k size of desired neighborhoods
ε minimum neighbor similarity threshold
di vector representing object di
di,j value for jth feature in di

d≤l
i ,d>l

i prefix and suffix of di at dimension l
Γdi neighborhood for object di
σdi smallest similarity value in Ndi
N set of neighborhoods
N̂ set of initial approximate neighborhoods
I inverted index
µ candidate list sizes
γ number of neighborhood enhancement updates
θ number of objects in an inverted index tile
ζ number of non-zeros in an inverted index tile
η number of objects in a query tile

3. Serial algorithms

In this section, we present an overview of our serial ε-NNG
and k-NNG construction methods, L2AP and L2Knng. In de-
scribing the methods, we will also analyze the flow of compu-
tation and data in the algorithms, which will inform our algo-
rithmic choices for the parallel methods described in Section 4.

3.1. L2AP
Most serial APSS solutions follow a similar computation

framework, first introduced by Bayardo et al. [11]. The main
idea in the framework is to decompose the computation of
DDT , which finds all pairwise similarities for objects in D,
into

DDT = DAT + DBT ,

where D = A + B, and matrices A and B contain disjoint
subsets of the non-zero values in D. Specifically, for the ith
object, A contains the prefix vector d≤li and B contains the
suffix vector d>li as their respective ith rows. The segmenta-
tion point l is chosen individually for each object such that all
correct neighbor pairs, those that will be part of the exact so-
lution, will have a non-zero dot-product after computing DBT .
The computation of DAT is then restricted to only those object
pairs with non-zero values in DBT . Additional object pairs
are pruned (eliminated from consideration) during both matrix
product computations by relying on different similarity upper
bounds that are checked against the threshold ε, which is an
input to the problem. Figure 1 depicts a conceptual decomposi-
tion of matrix D into its prefix and suffix components.

A B

D

Figure 1: Decomposition of matrix D into its prefix and suffix sections,
denoted as matrices A and B.

Algorithm 1 The AllPairs Framework
1: function ALLPAIRS(D, ε)
2: Set processing order for vectors and features
3: O ← ∅, Ij ← ∅, for j = 1, . . . ,m
4: for each q = 1, . . . , n do
5: cq ← GenerateCandidates(dq, I, ε)
6: O ← O ∪ VerifyCandidates(dq, cq, I, ε)
7: Index(dq, I, ε)
8: return O

Algorithm 1 describes the sequential similarity search execu-
tion in the AllPairs framework. Given that cosine similarity is
commutative, the framework only computes the lower triangu-
lar part of DDT . The algorithm incrementally finds the result
by identifying each object’s neighbors, one object at a time,
in a given processing order. While processing an object dq ,
which we call the query, a list of potential candidates is gener-
ated (line 5) by computing cq = dqB

T
<i, where BT

<i contains
only rows that come before i in the processing order. The in-
verted index I is a growing compressed sparse column (CSC)
representation of BT

<i. A candidate for the ith object is any
object with a non-zero value in cq . Some of the values in cq
are expressly set to zero (candidate pruning) if a similarity es-
timate with that candidate is below ε. In the second stage, each
candidate is verified (line 6) by computing, for each candidate
dc,
〈
dq,d

≤
c

〉
+ cq,c, where d≤c = A(c, :) is the prefix of dc,

those values of dc not included in B. Additional candidates are
pruned and only those with a similarity of at least ε are added
to the result. In the final stage (line 7), the query object is an-
alyzed and some of its suffix features and other meta-data are
added to the growing inverted index I.

Awekar and Samatova [9] provide the only existing shared
memory parallel algorithm to solve the ε-NNG construction
problem, which we call pAPT. Their method is based on an ex-
isting serial APSS algorithm they developed, APT [8], and uses
a similar filtering strategy as described in this section. In the re-
mainder of this section, we highlight the pruning choices in APT
and L2AP. Additionally, we analyze memory access patterns
inherent in the computations in each stage of the framework.
Table 2 provides a quick reference for these pruning choices.

3.1.1. Indexing
Since lists in the inverted index are traversed each time a

search is performed for a query object, it is beneficial to index
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Table 2: Similarity estimates in APT/pAPT and L2AP/pL2AP.

bound stage estimate APT / pAPT L2AP / pL2AP

idx idx sim(d≤j
q ,d>q)

〈
d≤j
q ,mx≥q

〉
min(

〈
d≤j
q ,mx≥q

〉
, ||d≤j

q ||2)

sz c.g. min(||dc||0) (ε/||dq ||∞)2 (ε/||dq ||∞)2

rs sim(d≤j
q ,d<q)

〈
d≤j
q ,mx

〉
min(

〈
d≤j
q ,mx

〉
, ||d≤j

q ||2)

l2cg sim(d<j
q ,d<j

c ) – ||d<j
q ||2 × ||d<j

c ||2
ps c.v. sim(dq ,d

≤
c ) – min(

〈
d≤c ,mx≥c

〉
, ||d≤c ||2)

dps1 sim(dq ,d
≤
c ) min(||dq ||∞ × ||d≤c ||1, ||dq ||1 × ||d≤c ||∞) min(||dq ||0, ||d≤c ||0)× ||dq ||∞ × ||d≤c ||∞

dps2 sim(dq ,d
≤
c ) – min(||dq ||0, ||d≤l

c ||0)× ||d≤l
q ||∞ × ||d≤l

c ||∞
l2cv sim(d<j

q ,d<j
c ) – ||d<j

q ||2 × ||d<j
c ||2

The vectors dq and dc represent the query and candidate objects, respectively. Prefix and suffix vectors are defined in Section 2. The
prefix vector ||d≤c || is the un-indexed portion of the candidate. The vector mx represents the max vector, containing the maximum
value for each feature in the dataset. Features in the max vector mx≥q are also upper-bounded by ||dq||∞. The feature j represents a
non-zero feature in the query and/or the candidate. Here, the feature l is the last un-indexed candidate feature in the feature processing
order that the query also has in common.

as few values as possible. Indexing is delayed in the framework
until the similarity estimate of the query prefix with any unpro-
cessed object reaches the threshold ε (line 3 in Algorithm 2).
Any unprocessed similar object, one with a similarity of at least
ε with the query, is guaranteed in this way to have at least one
feature in common with the query object. Then, when that sim-
ilar object is processed, the query object will be found while
traversing the index.

Algorithm 2 Indexing in the AllPairs Framework
1: function INDEX(dq, I, ε)
2: for each j = 1, . . . ,m, s.t. dq,j > 0 do
3: if sim(d≤j

q ,d>q) ≥ ε then . idx bound
4: Ij ← Ij ∪ {(dq, dq,j)} . add suffix to index

While improving computation efficiency by limiting the
number of non-zeros traversed when identifying neighbors for a
query object, the partial indexing of only suffix values in each
query object is also an effective pruning strategy. Note that
some objects may not have any features in common with the
query suffix. These objects are automatically removed from
consideration, without even starting to compare them to the
query. Figure 2 shows an example for indexing a query ob-
ject dq in our framework. In the figure, shaded cells represent
non-zero values, and the index j is chosen such that the sim-
ilarity of the prefix d≤jq with any unprocessed object is lower
than ε. Let dq+1, dq+2, and dq+3 be three such unprocessed ob-
jects. When dq is considered as a potential neighbor for these
objects, our method initially explicitly computes only the suffix
dot-product

〈
d>j
q ,d>j

c

〉
, and estimates the prefix dot-product〈

d≤jq ,d≤jc

〉
only for those non-zero suffix dot-products. As

such, while dq+3 and dq have feature f1 in common, dq will
never be considered as a potential neighbor for dq+3.
APT computes the prefix similarity estimate sim(d≤jq ,d>q),

which we call the idx bound, as the dot product between the
query vector and the max vector, the vector made up of all max-
imum feature values in the dataset, denoted as mx. Note that,

computeestimate

j

Figure 2: Example partial indexing.

if the dot product between the query prefix and the maximum
vector is below the threshold ε, the query can only be a neigh-
bor of one of the remaining unprocessed objects if they have
at least one feature in common in the query suffix, which has
already been indexed. This upper bound similarity estimate is
improved by processing objects in non-increasing order of their
maximum feature weights (‖di‖∞ ≥ ‖dj‖∞, ∀ i < j), and
then bounding the max vector by the maximum feature weight
in the query,

sim(d≤jq ,d>q)APT ≤
〈
d≤jq ,mx≥q

〉
, where,

mx≥q = 〈min(mx1, ||dq||∞), . . . ,min(mxm, ||dq||∞)〉.

In addition, L2AP uses the `2-norm of the query prefix ending
at index j, inclusive, ||d≤jq ||, as an estimate of the query object
similarity with any other object, which includes unprocessed
objects,

sim(d≤jq ,d>q)L2AP ≤ min(
〈
d≤jq ,mx≥q

〉
, ||d≤jq ||2).

Assuming an unprocessed candidate object does not have non-
zero values for any of the query suffix features, then their prefix
norm ‖d≤jc ‖2 = 1. However, since by construction ‖d≤jq ‖2 <
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ε, leveraging the Cauchy-Schwarz inequality,
〈
d≤jq ,d≤jc

〉
< ε

and the candidate need not be considered. By constructing a
partial index (adding only the suffix of each vector to the in-
dex), our method automatically ignores these objects.

When indexing each query suffix non-zero value (line 4 in
Algorithm 2), L2AP also indexes additional meta-data, such as
the `2-norm of the query prefix and its maximum value, which
are used in future pruning. The similarity estimate of the un-
indexed query prefix with unprocessed objects is also stored,
to be used during candidate verification as an effective pruning
strategy for false positive candidates.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
ε

  0

20

40

60

80

100

pe
rc

en
t

ti
m

e

idx cg cv

Figure 3: Percent execution times for the WW500 dataset.
The stacked bars show the percent of search time taken by the
indexing (idx), candidate generation (cg), and candidate verification
(cv) phases in L2AP, for similarity thresholds ranging from 0.1 to 0.9.

Data access analysis. Indexing requires traversing the sparse
query vector and accessing values in the max vector, which are
stored as a dense array. Since this process occurs only once for
each object in the set, it takes much less of the overall search
time than the other two stages in the framework. As an exam-
ple, Figure 3 shows the percent of overall search time taken by
each of the three stages in L2AP, for ε ranging from 0.1 to 0.9
and the WW500 dataset (see Section 5 for dataset details). Fur-
thermore, values in both the query vector and feature maximum
values are accessed sequentially, in sorted feature processing
order, and can take advantage of software and hardware pre-
fetching to reduce latency. As a result, we will focus on opti-
mizing the other two stages in the framework. It is important
to note, however, that the size of the inverted index is highly
dependent on the similarity threshold ε. As shown in Figure
1 of [3], higher thresholds allow delaying indexing further and
lead to a smaller inverted index, which can lead to more poten-
tial candidates being automatically pruned.

3.1.2. Candidate generation
During the candidate generation stage of the framework,

which is described in Algorithm 3, the lists in the current ver-
sion of the inverted index associated with non-zero feature val-
ues in the query object are scanned, one list at a time. An ac-
cumulator (map based data structure that accumulates values

Algorithm 3 Candidate Generation in the AllPairs Framework
1: function GENERATECANDIDATES(dq, I, ε)
2: cq ← ∅ . accumulator
3: for each j = 1, . . . ,m, s.t. dq,j > 0 do
4: for each (dc, dc,j) ∈ Ij do
5: check whether to prune dc . sz bound
6: if cq,c > 0 or dc is a new candidate with

sim(dc, dq) estimated at least ε then . rs bound
7: cq,c ← cq,c + dq,j × dc,j
8: check whether to prune dc . l2cg bound
9: return cq

for given keys) is used to keep track of partial dot-products be-
tween the query and encountered objects. Once accumulation
has started for an object, it becomes a candidate. Figure 4 de-
picts the use of an accumulator data structure during candidate
generation for a query d3 in an example dataset. In the figure,
cells with solid background represent non-zero values. Our al-
gorithm traverses only the inverted index lists for features 1, 2,
and 5, which have non-zero values in d3. Within those lists,
which are sorted in increasing object processing ID order, only
non-zeros for documents with a smaller ID are accumulated,
depicted by the red line bisecting each list. The right-side of
the figure shows the multiply-add operations that are executed
and the accumulator structure (here depicted as a simple list).

݀ହ ݀ହ

݀ହ ݀ଷ ݀ସ ݀ହ ݀ସ

݀ଷ ݀ଶ ݀ଶ ݀ଷ ݀ଶ

݀ଶ ݀ଵ ݀ଵ ݀ଵ ݀ଵ ݀ଵ

ଵ݂ ଶ݂ ଷ݂ ସ݂ ହ݂ ݂

Inverted Index

ଵ݂ ଶ݂ ହ݂݀ଷ

݀ଵ ݀ଶ ݀ଷ ݀ସ ݀ହ

Accumulator

ܣ ݀ଶ ൌ ݀ଷ,ଵ ൈ ݀ଶ,ଵ
ܣ ݀ଵ ൌ ݀ଷ,ଶ ൈ ݀ଵ,ଶ
ܣ ݀ଶ ൌ ݀ଷ,ଶ ൈ ݀ଶ,ଶ
ܣ ݀ଵ ൌ ݀ଷ,ହ ൈ ݀ଵ,ହ

Figure 4: Use of accumulator data structure during candidate genera-
tion.

Accumulation is prevented for a new object in two additional
ways. First, the size of the candidate vector (number of non-
zeros) is checked against a minimum size estimate, which we
call the size (sz) bound, and candidates with too few non-zeros
are ignored. Both APT and L2AP use the same bound in this
step2. Second, no new candidates are accepted if the query pre-
fix does not have enough weight to achieve at least ε similarity
with an indexed object. Index lists are traversed in inverse fea-
ture processing order, and the similarity estimate sim(dc, dq)
in line 6 of Algorithm 3 is approximated as the similarity of the
query prefix with any indexed object, sim(d≤jq ,d<q), which we
call the remaining similarity (rs) bound. In APT, the approxi-
mation is based on computing the similarity of the query with

2Note that [3] uses a different sz bound, ε/(||dq ||∞ × ||dc||∞), and er-
roneously states it is superior to (ε/||dq ||∞)2. We found both bounds provide
limited benefit for different values of ε, and chose to use the same bound as APT
in this work to simplify comparison.
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the max vector, while L2AP additionally bounds it by the prefix
`2-norm of the query,

sim(d≤jq ,d<q)APT ≤
〈
d≤jq ,mx

〉
,

sim(d≤jq ,d<q)L2AP ≤ min(
〈
d≤jq ,mx

〉
, ||d≤jq ||2).

While accumulating partial dot-products with candidates, at
each feature they have in common with the query, L2AP also
checks an additional bound, l2cg, based on estimating the pre-
fix similarity up to that feature, leveraging the Cauchy-Schwarz
inequality, as

sim(d<jq ,d<jc ) ≤ ||d<jq ||2 × ||d
<j
c ||2.

Data access analysis. The critical memory access portions of
the candidate generation stage are updating values in the accu-
mulator data structure, which can be reused for each query, and
traversing index lists. If these structures take up more than the
available cache memory, the computation will be delayed while
data is loaded from main memory.

Due to the predefined object processing order, objects that do
not meet the minimum size requirement when traversing the in-
dex will also not meet the requirement for future query objects
and can be removed from the index. Removing objects from
the index is a costly operation, and APT instead updates inverted
list start pointers, effectively removing objects from the start of
the list until an object of adequate size is found. These objects
will not need to be traversed in future iterations and can speed
up computation. Experiments in [3] showed this technique had
limited benefit and L2AP does not use it.

3.1.3. Candidate verification

Algorithm 4 Candidate Verification in the AllPairs Framework
1: function VERIFYCANDIDATES(dq, cq, I, ε)
2: for each dc s.t. cq,c > 0 do
3: check whether to prune dc . ps and dps1 bounds
4: Find highest j s.t. d≤c,j > 0 ∧ dq,j > 0
5: check whether to prune dc . dps2 bound
6: for each j s.t. d≤c,j > 0 ∧ dq,j > 0 do
7: cq,c ← cq,c + dq,j × dc,j
8: check whether to prune dc . l2cv bound
9: store similarity if cq,c ≥ ε

Candidate verification iterates through the list of candidates
and computes the partial similarity between the query vector
and the un-indexed portion of each candidate, adding it to the
already accumulated similarity (line 7 in Algorithm 4). Each
candidate is first vetted based on an upper bound of its un-
indexed prefix similarity with any object stored during index-
ing. APT uses the Hölder inequality to derive this bound, which
we name dps1, as

sim(dq,d
≤
c )APT ≤ min(||dq||∞ × ||d≤c ||1, ||dq||1 × ||d

≤
c ||∞).

L2AP uses several different estimates here. First, since the
query follows the candidate in processing order, the sim-
ilarity sim(dq,d

≤
c ) can be approximated as the similarity

sim(d≤c ,d>c), which was computed and stored while indexing
dc, and is equivalent to

sim(dq,d
≤
c )L2AP ≤ min(

〈
d≤c ,mx≥c

〉
, ||d≤c ||2).

We call this bound ps. Second, L2AP uses a different dps1
bound that, while theoretically inferior to the one in APT with
regards to candidate pruning, was slightly more efficient to
compute in experiments on a wide range of datasets in [3],

sim(dq,d
≤
c )L2AP ≤ min(||dq||0, ||d≤c ||0)× ||dq||∞ × ||d≤c ||∞.

Third, after finding the last un-indexed candidate feature l in
the feature processing order that the query also has in common,
L2AP checks a tighter version of the dps1 bound, which we call
dps2,

sim(dq,d
≤
c )L2AP ≤ min(||dq||0, ||d≤lc ||0)×||d≤lq ||∞×||d

≤l
c ||∞.

Finally, while computing the prefix dot-product, at each com-
mon feature, L2AP checks the Cauchy-Schwarz inequality
based estimate, which here we call l2cv,

sim(d<jq ,d<jc ) ≤ ||d<jq ||2 × ||d
<j
c ||2.

Data access analysis. The accumulator is not critical in the
candidate verification stage, as processing occurs for one candi-
date at a time. The partial accumulated similarity of a candidate
can be looked up once and further accumulation can occur on
the stack. On the other hand, feature values and meta-data as-
sociated with those features in the query vector are accessed
in a random fashion, based on the features encountered in the
candidate object. To facilitate computing dot products between
the query and candidate vectors, we have found it beneficial to
insert the feature values of the query vector, its prefix `2-norm
values, and its prefix maximum values in a hash table. When
iterating through the sparse version of a candidate object’s un-
indexed prefix, the query feature, prefix maximum and `2-norm
values can then be quickly looked up in O(1) time. The cost
of using a hash table can be offset by reusing the structure for
verifying many candidates. An alternative to looking up query
values in a hash table would be to traverse the candidate and
query vectors concurrently, assuming a predefined global fea-
ture traversal order. We have found that, in most cases (other
than datasets with small number of vector non-zeros), this strat-
egy leads to 2x-3x slower execution times.

3.2. L2Knng

Our k-NNG construction method, L2Knng, relies on similar
filtering as discussed in Section 3.1. However, since the method
does not have a global minimum similarity threshold ε as input,
it cannot use the same upper bound similarity estimates and
processing order as L2AP. L2Knng instead relies on minimum
similarity values in each of the object neighborhoods as bound-
ing thresholds for the filtering framework. Due to this fact, un-
like L2AP, which processes each neighborhood independently,
L2Knng must keep track of n k-neighborhoods throughout its
execution. Updating these neighborhoods can become a source
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of thread contention in the shared memory parallel setting. In
this section, we will give an overview of L2Knng, paying close
attention to data access patterns and potential contention.
L2Knng execution consists of two phases. First, in the ap-

proximate graph construction phase, L2Knng finds an initial
k neighbors for each of the objects in D by calling our ap-
proximate graph construction method, L2Knng-a. The mini-
mum neighborhood similarities in each of the neighborhoods
of the approximate graph are then used as pruning thresholds
in the filtering phase, which outputs the exact nearest neigh-
bor graph. L2Knng-a constructs the approximate graph in two
steps. First, in the initial graph construction (IC) step, neigh-
bors that are more likely to be in the exact k-NNG are chosen
based on shared features with high weight. Then, a number
of graph enhancement (GE) steps are executed which attempt
to improve the quality of the neighborhoods by finding closer
neighbors among the neighbors of the current neighbors. Algo-
rithm 5 gives an overview of this process.

Algorithm 5 The L2Knng Algorithm
1: function L2KNNG(D, k, γ, µ)
2: N̂ ← IC(D, k, µ) . Begin L2Knng-a
3: for each i = 1, 2, . . . , γ do
4: N̂ ← GE(D, k, µ, N̂ ) . End L2Knng-a
5: N ← Filter(D, k, N̂ )
6: returnN

Our serial improvements in L2Knng focused on the approx-
imate graph construction phase of the method. At a very high
level, each of the steps in the L2Knng-a execution is composed
of the following tasks, which are shown in Algorithms 6 and 7
and will be detailed later in the discussion. Input data or the
current neighborhoods are sorted and indexed to facilitate the
selection of neighbor candidates (srt). Then, for each query
object, a candidate list of potential neighbors is selected (sel)
that may improve the current neighborhood. Data associated
with the query object is optionally entered into a data struc-
ture that can facilitate fast dot-product computations or prun-
ing (ins). Then, dot-products are computed between the query
and each of the chosen candidates (sim), skipping some of the
candidates whose similarity has already been previously com-
puted. Finally, some of the neighborhoods are updated (upd)
with computed similarities that improve them.

Algorithm 6 Initial graph construction in L2Knng-a
1: function IC(D, k, µ)
2: Create inverted index of D . srt
3: Sort vectors in D and inverted index lists . srt
4: for each i = 1, 2, . . . , |D| do
5: Choose µ candidates for the ith object . sel
6: Hash the ith object . ins
7: Compute similarities of di with all µ candidates . sim
8: Update Γi and candidate neighborhoods . upd
9: N̂ =

⋃
Γi

10: return N̂

In an effort to gauge where the algorithm spends most of its
time, we instrumented the L2Knng-a code with timers for each

Algorithm 7 Graph enhancement in L2Knng-a
1: function GE(D, k, µ)
2: Create N, sparse matrix version of N̂ . srt
3: Create inverted index of N . srt
4: Sort vectors and inverted lists in N . srt
5: for each i = 1, 2, . . . , |D| do
6: Choose µ candidates for the ith object . sel
7: Hash the ith object . ins
8: Compute similarities of di with all µ candidates . sim
9: Update Γi and candidate neighborhoods . upd

10: N̂ =
⋃

Γi

11: return N̂

Table 3: Percent of the computation time for different sections of the approxi-
mate graph construction.

initial construction
dataset k sort sel ins sim upd perc
RCV1 10 3.17 5.57 0.16 88.04 3.07 78
RCV1 100 4.44 5.70 0.26 80.30 9.30 39
RCV1 500 1.11 5.27 0.06 83.48 10.07 57

WW500 10 24.07 0.94 1.15 73.06 0.78 69
WW500 100 7.92 0.91 0.31 89.57 1.29 52
WW500 500 2.46 0.82 0.10 94.77 1.84 53

graph enhancement
dataset k sort sel ins sim upd perc
RCV1 10 1.74 20.59 3.05 69.54 5.08 22
RCV1 100 2.65 20.98 0.26 72.29 3.82 61
RCV1 500 3.03 26.84 0.06 66.64 3.42 43

WW500 10 0.27 3.97 5.01 89.52 1.24 31
WW500 100 0.37 2.38 0.33 96.25 0.67 48
WW500 500 0.59 2.44 0.11 96.03 0.84 47

The table shows, for the initial graph construction and neighborhood enhance-
ment phases of the L2Knng-a method, the percent of execution time of different
tasks within each phase discussed in Section 3.2. The perc column shows the
percent of the overall L2Knng-a execution taken up by the current phase of the
algorithm. For each experiment, tasks taking up a significant portion of the
execution time are highlighted in bold.

of the tasks. Table 3 shows the percent of the overall execution
time in each phase taken by each of the tasks in the initial con-
struction and graph enhancement phases, when searching for
10, 100, and 500 nearest neighbors in two datasets described in
Section 5. In each of the experiments, we only executed one
round of neighborhood enhancements (γ = 1) and chose can-
didate list sizes (µ) that would lead to average recall of at least
95%, i.e., L2Knng-a finds most of the nearest neighbors for
each object. The last column in the table (perc) shows the per-
cent of the overall L2Knng-a execution taken up by the current
phase (IC or GE) of the algorithm. The results of this experi-
ment show that L2Knng-a spends the majority of its execution
time selecting candidates and computing similarities between
query and candidate objects. Indexing and sorting can also ac-
count for a significant portion of the execution time when k is
small. While graph enhancement takes up less time for small
values of k, it accounts for almost half of the overall execution
for larger k values.

Given these observations, we focused our efforts to improve
L2Knng-a on the similarity computation, sorting, and candidate
selection tasks. In the following sections we will detail each of
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the L2Knng-a tasks and our proposed improvements.

3.2.1. Index and sort
L2Knng-a chooses candidates in the IC phase by matching

objects with common high weight features. To facilitate this
search, it sorts the entries in each object vector and in each in-
verted index list in non-increasing weight order. Then, it selects
candidates for a query object by iterating through the inverted
index lists associated with its highest weight features.

Since only µ candidates are selected for each query object,
it is not necessary to fully sort all entries of the object vec-
tors and inverted lists. With high probability, each inverted list
will contain more than two entries (one entry will be associated
with the query object). Thus, as an enhancement to L2Knng-a,
we propose sorting only the top-µ values in each vector and in-
verted list. For each vector and inverted list with lengths greater
than µ, we first apply a select procedure [27], which partitions
the list such that the leading µ values are greater or equal to
the remaining values, and then sort only the leading µ values.
This improvement reduces the complexity of sorting a list from
O(l log l), where l is the size of the list, to O(l + µ logµ), and
can be beneficial when µ is small or for datasets with very long
vectors or inverted lists.

In each GE phase, L2Knng-a chooses candidates by match-
ing neighbors and neighbors’ neighbors with high similarity
values. It first creates a sparse matrix version of the current
approximate neighborhood graph, N, such that the ith row of
N corresponds to the k-neighborhood of the ith object. It sorts
the entries in each row of N in non-increasing value order and
selects candidates for a query object by iterating through rows
in N associated with those objects that are the closest neigh-
bors of the query, i.e., the column IDs of the leading entries
in the query neighborhood row. For those query objects with
less than µ candidates selected through this process, L2Knng-a
further iterates through neighborhoods of objects that have the
query object as their neighbor, in non-increasing order of their
similarity with the query. We call this process reverse candi-
date selection. To facilitate this search, L2Knng-a creates an
inverted index for N and sorts the inverted lists in the index in
non-increasing value order. In our experiments, we have found
reverse candidate selection rarely improves effectiveness and
can often degrade GE efficiency. In pL2Knng, we skip this op-
timization, do not create an inverted index for N, and only sort
its row entries.

3.2.2. Candidate selection
In the IC phase, L2Knng-a selects candidates by iterating

through two inverted lists at a time associated with the high-
est values in the query vector. Algorithm 8 describes this pro-
cedure. The function nextList provides the inverted list asso-
ciated with the next non-increasing value in q. The function
nextCand provides the next candidate in the chosen list, skip-
ping the query object and any other objects that have already
been selected. L2Knng-a uses an accumulation data structure
to both track whether an object has already been selected as a
candidate and to compute its partial dot-product with the query,
denoted as

〈
q,a≤

〉
in Algorithm 8. Here, a≤ is the prefix of a

up to and including the feature associated with the index list A.
Given two potential candidates ca and cb, L2Knng-a chooses ca
only if its partial dot-product with the query considering fea-
tures already processed is greater than that of cb.

Algorithm 8 Candidate selection in the IC phase of L2Knng-a
1: function SELECTCANDIDATESIC(D, q, µ)
2: A← nextList(q), B ← nextList(q), C = ∅
3: while |C| < µ and A 6= ∅ and B 6= ∅ do
4: if A = ∅ or B = ∅ then
5: Choose candidates only from the remaining list
6: a← nextCand(A), b← nextCand(B)
7: if

〈
q,a≤

〉
>
〈
q, b≤

〉
then

8: C ← C ∪ a
9: A← A \ a

10: A← nextList(q) if A = ∅
11: else
12: C ← C ∪ b
13: B ← B \ b
14: B ← nextList(q) if B = ∅
15: end while
16: return C

We have improved candidate selection in the IC phase of
L2Knng-a by simplifying the candidate choice condition (line 7
of Algorithm 8) to dq,f(A)×da,f(A) < dq,f(B)×db,f(B), where
f(A) is the feature ID of inverted list A. This simplification
keeps the original intent in the selection and has not shown de-
creased effectiveness in experiments. Instead, the efficiency of
this step is increased by removing the need to compute partial
dot-products. Furthermore, we use a bitvector data structure
to track candidates that have already been selected, which uses
less cache memory and may also help increase performance.

The GE phase selects candidates by iterating through neigh-
bors’ neighborhoods, selecting the neighbor a with the next
smaller similarity value in the query’s neighborhood. The
neighbors of a are then visited in non-increasing similarity
value order. While iterating through these neighbors, candi-
dates are only accepted if their similarity value is greater than
the similarity between a and the query. We have not made
changes to the selection process in this phase of L2Knng-a.
Figure 5 shows, as an example, the process of selecting can-
didates for an object d1 during the GE phase of our method,
given k = 2. In the figure, we only show relevant edges for
d1 and its neighbors. Edge weights represent object similari-
ties. Given a candidate list size µ = 3, L2Knng-a first follows
the edge towards d9 and selects its neighbors as candidates, in
non-increasing order of edge weights; then, L2Knng-a follows
the edge toward d2 and adds its highest weight neighbor to the
candidate list.

3.2.3. Query insertion and similarity computation
Since L2Knng-a computes the similarity of a query vector

with many (namely, µ) different candidate vectors, it creates a
dense version of the query vector, inserting its values into an
array of size m. Each dot-product can then be computed as a
sparse-dense vector dot-product, by iterating through the non-
zero values of the candidate vector and looking up values of
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Figure 5: Graph enhancement example.

the query vector in the array. Given a vector q representing the
dense version of dq , the dot-product

〈
q,dc

〉
can be computed

as,

for each j = 1, . . .m s.t. dc,j > 0 do
s← s+ dc,j × qj

As computing dot-products takes up the most time in the
L2Knng-a execution, we tried several other strategies for exe-
cuting this operation, including (1) packing the larger of the two
sparse vectors into the space of the smaller vector, trying to take
advantage of vectorization capabilities of modern hardware. (2)
computing sparse-sparse vector dot-products, and (3) the query
vector mask-hashing technique described in [4]. In our experi-
ments, none of the new dot-product computation strategies lead
to improved performance under a wide range of execution pa-
rameters in the shared-memory parallel setting.

3.2.4. L2Knng filtering
After constructing the initial approximate NNG through

L2Knng-a, our exact method uses the filtering framework pre-
sented in Section 3.1 to improve each object neighborhood until
completion. The object processing order in L2AP, which was
chosen to enhance some of the similarity bounds used in index
construction and filtering, will not be appropriate for L2Knng.
Instead, L2Knng processes objects in non-non-increasing min-
imum neighborhood similarity order. Moreover, the filtering
bounds used in L2Knng do not depend on the maximum value
in each object, which allows L2Knng to dynamically change
the object processing order. In pL2Knng, we followed the same
overall filtering strategy. The interested reader can find further
details in [4].

4. Parallel algorithms

We now present parallel solutions to the ε-NNG and k-NNG
problems. First, we summarize algorithmic choices in the
method of Awekar and Samatova, pAPT. We then introduce
pL2AP, which was designed based on the memory access ob-
servations we made in Section 3.1, with the goal of improv-
ing cache locality during similarity search. Finally, we present

pL2Knng, our parallel k-NNG construction method, which is
based on observations detailed in Section 3.2.

4.1. pAPT

Awekar and Samatova introduced the first shared memory
parallel APSS algorithm [9], pAPT, based on their serial APT
algorithm, which we describe in Algorithm 9. Their main idea
was to pre-compute the partial inverted index (lines 4–5), rather
than indexing each object after its processing, and allow threads
to share the index structure. To prevent synchronization over-
heads when removing values associated with short vectors from
the inverted index (line 5 of Algorithm 3), pAPT duplicates, for
each thread, a list of offsets from the beginning of each inverted
list. Then, each thread modifies its own offsets, incrementing
them to remove only items at the start of inverted lists.

Algorithm 9 The pAPT Algorithm
1: function PAPT(D, ε)
2: Set processing order for vectors and/or features
3: O ← ∅, Ij ← ∅, for j = 1, . . . ,m
4: for each q = 1, . . . , n do
5: Index(dq, I, ε)
6: for each q = 1, . . . , n, in parallel do
7: cq ← GenerateCandidates(dq, I, ε)
8: O ← O ∪ VerifyCandidates(dq, cq, I, ε)
9: return O

Awekar and Samatova proposed three load balancing strate-
gies in pAPT: block, round-robin, and dynamic partitioning.
The object processing order in the filtering framework, namely
in non-increasing maximum value order, after first normalizing
object vectors, means that objects with few non-zeros are pro-
cessed first, and those with many non-zeros last. As a result,
statically assigning n/nt consecutive objects to each thread,
where nt is the number of threads, leads to load imbalance.
Awekar and Samatova attempted to fix the potential imbalance
by assigning subsets of query objects with equal number of non-
zeros to each thread, but found this strategy is still worse than
round-robin or dynamic partitioning. The best performing load
balancing strategy in their experiments was dynamic partition-
ing, which assigns a small set of objects to a thread as soon as
it has finished processing its previously assigned set.

4.2. pL2AP

Our new method, pL2AP, uses the same indexing, candidate
generation and verification pruning choices as L2AP. Addition-
ally, pL2AP employs two strategies aimed at improving cache
locality during search. First, cache-tiling breaks up the inverted
index into blocks that can fit in the system cache, reducing la-
tency during candidate generation. Second, for datasets with
high dimensionality, mask-based hash tables can greatly reduce
the amount of memory required for storing query object values
and meta-data during search, allowing them to persist in the
cache during candidate verification. Algorithm 10 provides an
overview of our method.
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Algorithm 10 The pL2AP Algorithm
1: function PL2AP(D, ε, h, ζ, η)
2: Set processing order for vectors and features
3: for each q = 1, . . . , n in parallel do
4: S ← FindIndexSplit(dq, ε)

5: K ← FindIndexAssignments(S, ζ)
6: O ← ∅, Ik,j ← ∅, for j = 1, . . . ,m and k = 1, . . . ,K
7: for each q = 1, . . . , n do
8: Index(dq, I, S, ε)
9: for each k = 1, . . . ,K do

10: for each l = S[k], . . . , n, in increments of η do
11: for each q = l, . . . ,min(l+η −1, n), in parallel do
12: cq ← GenerateCandidates(dq, Ik, ε)
13: O ← O ∪ VerifyCandidates(dq, cq, Ik, ε)
14: return O

4.2.1. Cache-tiling
Cache-tiling aims to increase cache locality during the candi-

date generation stage of the similarity search by ensuring the in-
verted index and accumulator structures fit in cache. To achieve
this, the inverted index is split into several consecutive sections,
called tiles, and each index is used in turn to find neighbors.
Choosing the size of each cache tile is non-trivial in the APSS
problem, due to the varying number of feature values being in-
dexed for each object. For example, choosing to index the same
number of objects in each tile will lead to large indexes for the
final tiles to be processed which may not fit in cache. Instead,
pL2AP first finds the first feature to be indexed in each object
(line 4), which also provides the number of values to be indexed
in each object. These counts are used to define the consecutive
sets of objects to be indexed together in each tile. The list S,
containing tile start and end offsets given the predefined pro-
cessing order, is then used to index each object suffix in their
assigned inverted index (line 8).

We use an array to track accumulated similarities for candi-
dates. Since the accumulation array is randomly accessed for
different candidates encountered while traversing the inverted
index, nt accumulation arrays should also fit in cache along
with the index, one for each thread. The size of the accumula-
tion array is the same as the number of objects assigned to an
index.

The un-indexed portion of each un-pruned candidate vector
is sequentially accessed during candidate verification. To maxi-
mize cache locality, we explicitly create a sparse forward index
containing prefix values for objects in each tile.

During parallel sections (lines 3 and 11), pL2AP follows a
dynamic task partitioning approach, assigning a small set of
objects to a thread to process as soon as it has finished process-
ing its previous assigned set. Since candidate pruning is unpre-
dictable, a thread may get assigned objects that finish process-
ing quickly and may jump ahead many places in the processing
order. This may lead to loss of cache locality if some threads
read query objects from different portions of the dataset. To pre-
vent this, we process queries η at a time, in a block synchronous
fashion, where η is an input parameter, forcing threads to read
from the same subset of query vectors, which should be located

in close proximity in memory.

4.2.2. Query vector mask-hashing
During candidate verification, pL2AP traverses the candidate

prefix sequentially, rather than the query prefix, and checks
whether the query has non-zero values for the encountered fea-
tures. When a common feature is found, query object meta-data
(prefix `2-norm or maximum value) are used to check whether
the candidate can be pruned. An efficient way to locate query
vector values and meta-data during this process is to store them
in arrays, as dense vectors. However, for datasets with high
dimensionality (generally above 106), this technique can lead
to polluting the cache with zero values from the dense arrays,
evicting other necessary data.

Given that query vectors are sparse, and their features are
always processed in a predefined order, we developed a heuris-
tic hash-table data structure that uses a small amount of cache
space, takes advantage of O(1) access times for most look-
ups and leads to few collisions in practice. A small array of
size h + max(||dq||0) − 1 is used in pL2AP to store matching
offsets in one or more lists containing the query data. Here,
h = 2α (α ≥ 0) is a predefined parameter, generally much
smaller than m, and max(||dq||0) is the maximum number of
non-zero features for any object. An efficient hashing function
maps feature IDs to the [0, h − 1] domain, and collisions are
entered in the hash-table array in order, starting with index h.
Since partial dot-product computations with candidates follow
the same traversal order, collisions can be quickly resolved by
traversing only a subset of the overflow features. In practice,
however, we have found that less than 1% of hash key look-ups
end in collision.
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Figure 6: Example query hash table use in pL2AP.

Figure 6 provides an example of how a query object might
use the hash table in pL2AP, for h = 22. The hash table array
is initialized with negative values. Traversing the query non-
zeros in reverse feature processing order, the 11th query feature
is mapped to the 4th hash table cell, via an efficient truncate op-
eration, 11 & (4− 1), where & is the bitwise AND logical op-
erator. The feature ID is stored in the hash table at the mapped
key index, and one or more value arrays are populated with
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salient information about the query at the same key index loca-
tion. PL2AP tracks the query prefix value, size, maximum value,
and `2-norm at each index, which are used to check different
pruning bounds. In a similar fashion, the 10th query feature is
mapped to the 3rd hash table cell, and the 4th query feature to
the 1st hash table cell. When mapping the 2nd query feature,
the collision is handled by entering the item in the overflow part
of the hash table array, in traversal order. When verifying a can-
didate dc, its forward index features are traversed in the same
order as the query was traversed. Thus, when collisions occur,
they can be found by partially traversing the overflow section of
the hash table, keeping a pointer to the last cell with a feature
ID greater or equal than the sought ID.

To avoid excessive collisions, pL2AP dynamically chooses
whether to use the hash-table or dense arrays for the query ob-
ject data. Specifically, objects with less than h/23 non-zeros
will use the hash-table data structure, while the rest will use
dense vector representations of the query and meta-data vec-
tors.

4.3. PL2Knng

Algorithm 11 describes our parallel k-NNG construction
method, pL2Knng. Our method follows the same computa-
tion strategy as L2Knng, incorporating the improvements de-
scribed in Section 3.2. Namely, an approximate graph is first
constructed, which provides filtering thresholds when deriving
the exact neighborhood graph. Then, for each query object,
pL2Knng indexes some of its prefix values, ensuring that the
query object can be found in subsequent searches by objects
that belong in the query neighborhood or whose neighborhood
the query can enhance. During candidate generation (CG), us-
ing the index, pL2Knng selects a list of candidates for the query,
which are a superset of its correct neighbors. Part of the query
similarity value with each candidate is computed during the CG
stage, and upper-bound estimates on the similarity are used to
prune some of the candidates. Finally, pL2Knng completes the
similarity computation in the candidate verification (CV) stage,
performing additional pruning based on several upper-bound
similarity estimates, and updates the query and candidate neigh-
borhoods if the result can enhance them. For full details on the
filtering process, see [4].

Threads concurrently process different query objects in
pL2Knng. We devised a lock-less thread cooperation and neigh-
borhood update strategy that allows threads to dynamically
share available work and leads to good load balance in gen-
eral. In the remainder of this section, we will describe these
strategies, which are incorporated both in the initial approxi-
mate graph construction and the filtering stages in pL2Knng.

4.3.1. Cache-tiling
In order to enable cooperative processing of different query

objects in its filtering phase, pL2Knng indexes objects prior to
filtering. The index is split into several tiles, corresponding to
a set of consecutive objects in the object processing order, and
each index is used in turn to find neighbors. During filtering,
threads can all read the sections of the index they need in order

Algorithm 11 The pL2Knng algorithm.
1: function PL2KNN(D, k, ζ, θ, η)
2: N̂ ← pL2KNN -a(D, k)
3: Set object processing order given N̂
4: z ← 0, r ← 0, i← 1, I ← ∅
5: while i ≤ n do
6: j ← i
7: for each i = j, . . . , n do . Identify next tile
8: S ← FindIndexSplit(di, σdi)
9: z ← z + nnz(d>

i )
10: r ← r + 1
11: if z ≥ ζ or r = θ then
12: i← i+ 1
13: break
14: for each q = j, . . . , i in parallel do . Create index I
15: Index(dq, I, S, σdq )

16: for each l = j, . . . , n, in increments of η do . Filter
17: for each q = l, . . . ,min(l+η −1, n), in parallel do
18: cq ← GenerateCandidates(dq, I, k)
19: VerifyCandidates(dq, cq, I, N̂ , k)

20: I ← ∅
21: Update un-processed object processing order given N̂
22: end while
23: return N̂

to find candidates for their respective query objects. Since many
different sections of the index may be accessed concurrently, it
is beneficial for the index to fit in the available cache memory
on the system. The index size is highly data dependent.

Cache-tiling in pL2Knng is similar to the procedure described
in Section 4.2.1 for pL2AP. However, the number of values that
are indexed in pL2Knng depends on the magnitude of those val-
ues and the current minimum similarity in the object’s neigh-
borhood, which is not known a priori and changes throughout
the algorithm execution. A poor quality (low recall) initial ap-
proximate graph, for example, will lead to more values that
need to be indexed in each object to ensure a correct result.
The size of each tile is dynamically chosen to contain at most θ
indexed objects and ζ indexed non-zeros.

In pL2Knng, objects are processed in non-increasing value
order of their minimum neighborhood similarity σdi . Tak-
ing advantage of the commutative property of cosine similar-
ity, pL2Knng only compares a query object against objects that
come before it in the object processing order. After completing
the filtering process using the current index, it can be discarded.
The filtering leads to improved minimum neighborhood simi-
larities of un-indexed objects in the neighborhood graph repre-
sented by N̂ . As a result, pL2Knng then updates the object pro-
cessing order of un-indexed objects, improving index reduction
and pruning during subsequent searches that use the next index
tile.

After indexing a set of objects, pL2Knng splits the set of
query objects (those that come after the first indexed object
in the processing order) into query blocks of size η. Threads
are then dynamically assigned a small number of consecutive
queries at a time, which they process sequentially. Our method
keeps track of the k-nearest neighbors of an object by using
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a heap data structure. Note that, after finding neighbors for a
given query object, a thread can safely update the query neigh-
borhood heap. However, it cannot also update the neighborhood
of a candidate without locking, as another thread may be trying
to concurrently update the same heap. As such, pL2Knng keeps
a candidate list in memory for each of the objects in the query
block, deferring candidate neighborhood updates until all query
block objects have been processed. The parameter η should
be chosen to ensure η × θ values can be stored in memory, as
each candidate list has a maximum size of θ. Moreover, mod-
erately small η values can ensure the candidate lists are cache-
resident, leading to improved performance. The same query set
cache-tiling strategy is also used in the IC and GE phases of
our method. However, each candidate list size is µ there, so the
memory necessary to store candidates is η ×max(µ, θ).

4.3.2. Neighborhood updates
As mentioned in the previous section, since each object is in-

dependently processed by a thread, each thread can update the
query neighborhood as soon as it has found a candidate object
that can improve it. We have found it beneficial, however, to
update the query neighborhood after finalizing similarity com-
putations for all candidates. Given a set of candidates C with
|C| > k, we first select [27] the top-k values in the list, filtering
out those less than σq , the current minimum similarity in the
query neighborhood, and then sequentially insert them in the
query heap.

Figure 7: Segmentation of candidate lists for neighborhood updates.

Our strategy for updating candidate neighborhoods is slightly
different. Each thread is assigned a sequential block of n/p can-
didate objects whose neighborhoods they are responsible to up-
date, where p is the number of processing elements (threads).
When a candidate list is constructed, candidates are added in
the order they are found during the candidate selection process,
which results in a semi-random ordering. After updating the
query neighborhood, before moving on to the next query, the
thread re-arranges the similarities in the candidate list to ensure
efficient candidate list updates. Each value is checked against
the minimum similarity σc of the candidate neighborhood and
discarded if it cannot improve that neighborhood. The thread
then partitions the remaining values into p sections s.t. the
ith section contains similarities for objects in the ith candidate
block, which will be updated by the ith thread after the query
block has finished being processed. The thread also records
the starting and ending offset of each segment in the candidate
list. Figure 7 shows this strategy for objects d1–d5 from a set
of 16 objects, given 4 threads. This partitioning enables fast

Table 4: Dataset Statistics.

Dataset n m nnz µr σr µc σc

RCV1 0.80M 0.05M 62M 76 55 1347 8350
WW500 0.24M 0.66M 202M 830 386 306 3323
WW200 1.02M 0.66M 437M 430 302 659 8273

For each dataset, n is the number of vectors/objects (rows), m is the
number of features (columns), nnz is the number of non-zero values,
µr and σr are the mean and standard deviation of row lengths (number
of non-zeros), and µc and σc are the same statistics for column lengths.

candidate neighborhood updates at the end of each query block
processing, as each thread only needs to traverse a subset of
each candidate list to perform its required updates.

4.4. Parallel implementation details

Given the pL2Knng neighborhood update strategy described
in Section 4.3.2, the parallel execution of our algorithm does
not lead to any race conditions. In pL2AP, threads perform in-
dependent similarity searches. At the end of each query tile,
a single thread consolidates the results from all threads into
the output graph. The parallel implementation of our methods
is thus straight-forward, relying only on OpenMP parallel
for loops and barrier statements.

5. Experimental Methodology

In this section, we describe the datasets, baseline algorithms,
and performance measures used in our experiments.

5.1. Datasets

We use three text-based datasets to evaluate each method.
They represent some real-world and benchmark text corpora of-
ten used in text-categorization research. Their characteristics,
including number of objects (n), features (m), and non-zeros
(nnz), row/column length mean and standard deviation (µr/c,
σr/c), are detailed in Table 4. Standard pre-processing, includ-
ing tokenization, lemmatization, and tf-idf scaling, were used
to encode text documents as vectors. We present additional de-
tails below.

• RCV1 is a standard benchmark corpus containing over
800,000 newswire stories provided by Reuters, Ltd. for re-
search purposes, made available by Lewis et al. [32].

• WW500 contains documents with at least 500 distinct fea-
tures, extracted from the October 2014 article dump of the
English Wikipedia3 (Wiki dump).

• WW200 contains documents from the Wiki dump with at
least 200 distinct features.

As can be seen from the mean and standard deviation val-
ues listed in Table 4, the datasets we chose are quite varied

3http://download.wikimedia.org
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Figure 8: Non-zero distributions in rows / objects (top) and columns / inverted
lists (bottom) in our three datasets. In the top graph, the WW200 and WW500
lines coincide, as WW500 is a proper subset of WW200.

with respect to their row and column lengths. Figure 8 pro-
vides another insight into the non-zero composition in the three
datasets, showing the distribution of row (top) and column (bot-
tom) lengths. As both row and column frequency distributions
in the datasets follow the power-law, we plot the graphs log-log
scaled. Note that the WW200 and WW500 lines coincide in
the top graph for most points, as WW500 is a proper subset of
WW200.

5.2. Baseline approaches

We compare our methods against the following baselines.

5.2.1. ε-NNG construction experiments
• IdxJoin, APT, and L2AP are baseline serial APSS search

methods described in detail in [3]. We report speedup over
the fastest execution time of any of the serial methods.

• pL2AP is our parallel ε-NNG construction method, detailed
in Section 4.2.

• pIdxJoin uses similar cache-tiling as pL2AP, but does not
use any pruning when computing similarities. For each block
of queries, pIdxJoin sequentially retrieves a block of objects
to search against and indexes all their values. Threads then
share the index to compute similarities, via accumulation, of
each assigned query object against all indexed objects, retain-
ing those resulting pairs above the threshold ε.

• pAPT is the shared memory parallel APSS method by Awekar
and Samatova [9], which we described in detail in 4.1.

• pL2APrr follows the same parallelism strategy as pAPT, but
takes advantage of the advanced pruning bounds of L2AP.
After first indexing the suffixes of all objects, pL2APrr dy-
namically assigns small sets of query objects for processing
to available threads. For each query object, pL2APrr indexes
the same values and performs the same pruning in the candi-
date generation and verification stages as pL2AP.

5.2.2. k-NNG construction experiments
• pL2Knng is our parallel k-NNG construction method, de-

tailed in Section 4.3.
• pKIdxJoin is a straight-forward baseline similar to IDX

in [37]. The method uses similar cache-tiling as pL2Knng,
but does not use any pruning when computing similarities.
For each set of queries, pKIdxJoin sequentially retrieves a
set of objects to search against and indexes all their values.
Threads then share the index to compute similarities, via ac-
cumulation, of each assigned object in a query tile against all
indexed objects, retaining the top-k matches for each object.

• GF is an approximate k-NNG construction method proposed
by Park et al. [37]. We have created a shared memory paral-
lel version of GF, which we call pGF, using the same thread
cooperation strategy as in pL2Knng-a. Threads first work to-
gether to index enough high-weight features for each object
to ensure µ candidate neighbors have at least one feature in
common with each input object. Then, they dynamically split
the work of computing similarities of each object in an in-
verted list against all other objects in the list. Each thread up-
dates the neighborhood of an assigned query object as soon
as it has finished computing the similarity with a candidate
object. Threads synchronize at the end of each inverted index
list, reading computed similarities by all threads in order to
update neighborhoods for blocks of objects assigned to each
thread.

• NN-Descent is a shared memory parallel approximate k-NNG
construction method designed by Dong et al. [24] to work
with generic similarity measures which has been shown ef-
fective for both sparse and dense input.

Locality sensitive hashing (LSH) has been a popular method
for top-k search, but we have found that it does not in gen-
eral perform well in the k-NNG construction setting when one
requires high average recall. Both GF and NN-Descent have
been shown to outperform LSH in this setting, for k typically
≥ 10. Moreover, pL2Knng significantly outperforms GF and
NN-Descent in both serial and parallel execution environments.
As a result, we have chosen not to compare against LSH in this
work.

5.3. Performance measures
When comparing approximate k-NNG construction meth-

ods, we use average recall to measure the accuracy of the re-
turned result. We obtain the correct k-NNG via a brute-force
search, then compute the average recall as,

R =
1

|D|
∑
di∈D

# correct neighbors in Ndi
|Ndi |

.
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An important characteristic in our experiments is CPU run-
time, which is measured in seconds. I/O time needed to load the
dataset into memory or write output to the file system should be
the same for all methods and is ignored. Between a method A
and a baseline method B, we report speedup as the ratio of B’s
execution time and that of A’s. Additionally, we report strong
scaling for parallel methods, in which multi-threaded execution
times are compared with the 1-threaded execution of the same
method.

As a way to compare the amount of time threads spend wait-
ing for other threads to finish execution, we measure load im-
balance, as suggested by DeRose et al. [21] as,

% imbalance =
tmax − tmean

tmax
× p

p− 1
,

where p is the number of processing elements (threads) and tmax
and tmean are the maximum and mean thread times in the paral-
lel block, respectively.

5.4. Execution environment
Our method and all baselines are implemented in C and com-

piled using gcc 5.1 with the -O3 optimization setting enabled.
We used the OpenMP framework for implementing shared-
memory parallel methods. Each method was executed on its
own node in a cluster of Linux servers. Due to hardware avail-
ability restrictions, the ε-NNG and k-NNG sets of experiments
(our methods and all related baselines for each) were executed
on two different clusters. For the ε-NNG experiments, each
server was a dual-socket machine, equipped with 64 GB RAM
and two twelve-core 2.5 GHz Intel Xeon E5-2680v3 (Haswell)
processors. Each core is equipped with 32 KB L1 cache and
256 KB of L2 cache, and the 12 cores on each socket share 30
MB of L3 cache. For the k-NNG experiments, each server was
a dual-socket machine, equipped with 64 GB RAM and two
eight-core 2.6 GHz Intel Xeon E5-2670 (Sandy Bridge) pro-
cessors. Each core is equipped with 32 KB L1 cache and 256
KB of L2 cache, and the 8 cores on each socket share 20 MB of
L3 cache. Both servers were running CentOS 6.9 (Final).

For each ε-NNG method, we varied the similarity threshold ε
between 0.3 and 0.9, in increments of 0.1. For pL2AP, we fixed
η at 25K objects and varied ζ between 250K and 4M in 250K
increments. We set the masked hash-table size parameter h to
213.

We executed each k-NNG method for

k ∈ {10, 25, 50, 75, 100, 200, 300, 400, 500}

and tuned parameters for each method to achieve balanced high
recall and efficient execution. For all L2Knng based methods,
we set the parameter δ = 0.0001. For all experiments, we set
the pL2Knng parameter θ = 100K. We used the latest version
of the NN-Descent4 library available at the time of our experi-
ments (v.1.4), and set ρ = 1, and indexing K = µ (the candi-
date list size µ ≥ k). For all stochastic methods, we executed
a minimum of 3 tries for each set of parameter values and we
report averages of all tries.

4http://www.kgraph.org/releases/kgraph-1.4-x86 64.tar.gz

6. Results & Discussion

We will first present our ε-NNG construction experiment re-
sults, followed by those for the k-NNG construction experi-
ments and a short discussion.

6.1. PL2AP results

We now present our pL2AP experiment results, along two di-
rections. First, we study the effectiveness of our method with
regards to filtering unpromising object pairs. We compare prun-
ing effectiveness in pL2AP with that in pAPT, identify how early
candidates are pruned, and measure cache locality improve-
ments in our method. We also study the effect input parameters
have on the performance of our method. Second, we study the
efficiency of pL2AP in solving the APSS problem. We identify
the best pruning choices in pL2AP, compare its execution time
with that of other parallel methods and the best known serial
method for solving the problem, study the strong scaling char-
acteristics of our method, and measure how balanced the loads
of different threads are during execution.

6.1.1. Effectiveness study
Pruning effectiveness comparison with pAPT. Our method,
pL2AP, and the shared memory parallel baseline pAPT, follow
the same strategy in solving the APSS problem. They build a
partial inverted index that is used to identify, for each query ob-
ject, a list of candidates the query should be compared with.
While comparing query objects with candidates, they prune
as many un-promising pairs as possible, and in the end fully
compute the dot-product of a small subset of the candidate list,
which is a superset of the correct set of neighbors. While their
serial computation strategy is the same, the two methods rely
on different theoretic similarity upper bounds to decide which
values in the query object should be indexed, whether an ob-
ject should become a candidate, and when a candidate should
be pruned.

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0
WW200 WW500 RCV1

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

.3 .4 .5 .6 .7 .8 .9

WW200

.3 .4 .5 .6 .7 .8 .9

WW500

.3 .4 .5 .6 .7 .8 .9

RCV1

ε

c
a
n
d
 r

a
te

s
c
a
n
 r

a
te

pL2AP pAPT

Figure 9: Percent of potential candidate pairs (cand rate), and percent of po-
tential dot-products (scan rate) comparison between pL2AP and pAPT, for ε
between 0.3 and 0.9.
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Indexing fewer values can speed up index traversal and thus
lead to performance improvements. In addition, it will lead
to shorter candidate lists being generated. Considering fewer
candidates, as well as more aggressive pruning, can lead to
fewer dot-products being computed in full and to better perfor-
mance. Figure 9 shows the percent of potential candidate pairs
(cand rate), and percent of potential dot-products (scan rate)
for pL2AP and pAPT, for ε between 0.3 and 0.9, for the three
datasets. As compared to pAPT, our method considers fewer
candidates, and evaluates fewer complete dot-products, espe-
cially at high similarity values; pL2AP is able to prune a much
higher number of candidates than pAPT in all datasets, high-
lighting the improved pruning effectiveness in our method. The
size of the un-pruned set of candidates in pL2AP was between
1.002x–2.179x the size of the set of correct neighbors. Interest-
ingly, pruning was more aggressive in the Wikipedia datasets,
where the un-pruned set ranged between 1.002x–1.055x the
size of the set of correct neighbors, than in the RCV1 dataset,
where its range was 1.460x–2.179x. This may be due to the
fact that RCV1 has a much more compact feature space, which
allows for more features in common between random objects.

Pruning effectiveness in pL2AP. Our method works by prun-
ing the majority of the candidates that are not correct neigh-
bors. Once an object becomes a candidate, it can be pruned
by the l2cg bound while accumulating values traversing the in-
verted index in the candidate generation stage (cg in figures),
when checking the ps, dps1 and dps2 prefix similarity esti-
mate bounds at the onset of the candidate verification stage
(ses in figures), or by the l2cv bound while accumulating values
traversing the forward index in the candidate verification stage
(cv in figures). Earlier pruning of candidates means less time
spent accumulating dot-products in vain and will lead to im-
proved performance. In an experiment in which we used con-
sistent parameters for all datasets (h = 213, η = 25K, and ζ
= 1M ), we counted the number of candidates pruned in each
stage of the algorithm. We report these values in Figure 10, for
all datasets and ε values, along with the number of candidates
that were not pruned and had their dot-products computed in
full (dps in figures).

Results show that pL2AP prunes the majority of objects soon
after they become candidates, in the candidate generation stage
(cg). Most of the remaining objects are pruned by the ses
bounds, which are checked once, at the beginning of the can-
didate verification stage, and by additional pruning in the can-
didate verification stage (cv). At ε = 0.3, for example, only
0.02%–0.90% of candidates survived all pruning across our
datasets.

A large number of objects never become candidates in
pL2AP, as a result of either the `2-norm based candidate ac-
ceptance bound in the candidate generation stage of the algo-
rithm, or due to the prefix-filtering based index reduction. On
average across all ε values, 11.6%–32.0% of all potential can-
didates actually became candidates for our datasets. Of those,
most are pruned quickly, in the first stage of our method. As
a way to gauge how quickly candidates are pruned, we mea-
sured the number of executed multiply-adds versus the number

of possible multiply-adds (percent of accumulated non-zeros)
in the similarity computation of each pruned candidate. In Fig-
ure 11, we report the mean percent accumulated non-zeros for
our three datasets. In each experiment, we used consistent pa-
rameters for all datasets (1 thread, h = 213, η = 25K, and ζ
= 1M ).

The results show that, for all of the datasets and most ε val-
ues, before pruning unsuitable candidates, pL2AP accumulates
less than 4% of the common non-zeros. In the case of RCV1,
which may not use as many rare terms as Wikipedia, and a high
similarity threshold (ε = 0.9), the algorithm checks on average
about 20% of the vector non-zeros before pruning candidates.

Cache locality improvements in pL2AP. While pL2AP performs
the same pruning as L2AP, it scans each query object multi-
ple times to compare against objects in multiple constructed
inverted indexes. The smaller inverted indexes and the mask-
based hash table used during the search help avoid cache thrash-
ing, improving efficiency by reducing time wasted waiting for
data transfers from memory to cache. To measure the serial
effect of this improvement, we compared the 1-threaded exe-
cution of pL2AP against the serial L2AP algorithm. We used η
= 25K objects and ζ = 1M non-zeros for this test. Figure 12
shows speedup results for each of the three datasets we tested,
for ε between 0.3 and 0.9. The results show an improvement
over L2AP for datasets with long inverted lists.

The small inverted index in pL2AP is shared by all
threads in executing concurrent searches. As another way
to quantify cache locality improvements, we compared
the percent of cache misses when executing pL2AP and
pL2APrr with 24 threads. Both algorithms perform the same
pruning, but pL2APrr builds a single inverted index and
does not consider cache locality in its execution. We used
the perf Linux utility to count the number of instructions,
cache references, and cache misses (perf stat -v -B -e
instructions,cache-references,cache-misses)
in the shared last-level cache (LLC) of the Xeon processors.
Figure 13 shows our results when executing pL2AP with ζ
between 0.5M and 4M non-zeros and pL2APrr, on the RCV1
and WW200 datasets, for ε = 0.3. We show the size of the
inverted index that pL2APrr builds below its bar in the graph.
The figure shows the percent of LLC misses as opposed to total
number of instructions executed by the CPU. We observed
similar results for most other datasets and ε values. In general,
pL2AP improves cache locality, resulting in much fewer cache
misses than the pL2APrr variant. The results show that small
inverted indexes (ζ ≤ 1.5M) fit better in cache and lead to
fewer cache misses in general. While 1.2–1.6% of the pL2APrr
instructions result in cache misses, less than 0.05% of the
pL2AP instructions do so for ζ = 1.5M. Moreover, pL2AP

cache misses represent 1.5–4.1% of the cache references, as
oposed to 24–32% for pL2APrr.

Parameter sensitivity. Our method, pL2AP, is controlled by
three parameters. The size of the mask-based hash table, h,
is dependent on the dimensionality of the feature space. Choos-
ing a small h value for a dataset with large dimensionality will
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Figure 10: Pruning effectiveness in pL2AP. Each bar shows the number of candidates pruned during candidate generation (cg), at the onset of candidate verification
(ses), during candidate verification (cv), and the number of candidates whose similarity was computed in full (dps), for ε ranging between 0.3 and 0.9.
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Figure 12: Speedup of 1-threaded pL2AP over L2AP.

likely cause many hash table collisions and slow down execu-
tion. Similarly, the ζ parameter dictates the number of non-
zeros that should be included in each inverted index, which dy-
namically decides the size of each cache tile. Choosing a small
ζ value will lead to many inverted indexes being created which
may lead to slow-downs due to repeated traversals of the query
objects. On the other hand, choosing a ζ value that is too large
will diminish the cache locality benefits of our tiling strategy.
To ascertain the sensitivity of pL2AP to these parameter choices,
we tested different values of each parameter while keeping the
other two unchanged.

In the first experiment, we set ζ to 1M non-zeros and η to
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Figure 13: Percent of instructions resulting in LLC misses when executing
pL2APrr and pL2AP with ζ between 0.5M and 4M non-zeros on the RCV1
and WWW200 datasets.

25K and varied h between 25 and 215. Results of these ex-
periments over our three datasets are shown on the left side of
Figure 14, as execution times relative to the h = 213 parameter
choice for each dataset. Our method is not very sensitive to this
parameter in general.

The middle section of Figure 14 shows execution times for
each dataset, given h = 213 and ζ = 1M , for η between 1K
and 50K, relative to the execution time for η = 25K. We found
that choosing the size of each bulk synchronous block, η, does
not affect performance in pL2AP, as long as the η value is not
too small. We found any values above 5K to be adequate for
all datasets.

Finally, we tested the sensitivity of the ζ parameter, for val-
ues between 0.25M and 3.0M , given η = 25K and h = 213,
and show times relative to the ζ = 1M execution in the right
section of Figure 14. While the ζ choice will be dependent on
the cache configuration of the target system, our experiments
showed that pL2AP performed well for most datasets given ζ
set to at least 1M non-zeros.

6.1.2. Efficiency study
Effect of pruning choices on efficiency. Pruning is an effective
mechanism for reducing the number of similarity computations
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given ε = 0.3 (top) and ε = 0.9 (bottom).

Table 5: Tested pL2AP pruning strategies.
Strategy Bounds checked Index update

base {idx, rs, ps, l2cg, l2cv, dps1} no
sz base + {sz} no
dp base + {dps2} no

szdp base + {sz, dps2} no
szdpupd base + {sz, dps2} yes

that must be executed to solve the APSS problem. However,
bounds checking incurs additional costs which may not out-
weigh their benefit. Previous experiments in [3] proved the ef-
fectiveness of our `2-norm based bounds in each stage of the
search framework, and showed the sz and dps2 bounds had lit-
tle effect in general over the search efficiency. As a way to
quantify this effect when executing with multiple concurrent
threads, we tested pL2AP in four configuration scenarios, listed
in Table 5. The “base” configuration did not effect any pruning
based on the sz or dps2 bounds. The “sz” and “dp” configura-
tions enabled pruning based on the sz and dps2 bounds, respec-
tively, and the “szdp” configuration enabled pruning based on
both the sz and dps2 bounds. When checking the sz bound,
pAPT removes values associated with short vectors from the
beginning of inverted lists, which can potentially improve ef-
ficiency. We added this capability to pL2AP and tested it in the
configuration “szdpupd”, which enables all pruning strategies
and also performs index updates. Using the same input parame-
ters for all datasets (nt = 24, h = 213, η = 25K and ζ = 1M ),
we recorded search execution times under each scenario.

Table 6 reports the results of our experiment. For each ε
value, times in all configuration scenarios were normalized by
that of the sz scenario, and we report the mean, standard de-
viation (std), minimum and maximum of experiment results
across all ε values. The best performing results are highlighted
in bold. The sz and dp configurations showed little improve-
ment over the base one, at times leading to slower execution
times. Checking the sz bound was beneficial in most cases and
had better performance than checking the dps2 bound in gen-

Table 6: Performance of different pruning choice configurations in pL2AP.

versus mean stdv min max

WW200
nbase 0.9933 0.0163 0.9719 1.0240
dp6 1.0034 0.0112 0.9948 1.0296
sz 1.0000 0.0000 1.0000 1.0000
szdp 1.0152 0.0119 1.0047 1.0369
szdpupd 1.0661 0.0481 1.0139 1.1586

WW500
nbase 0.9980 0.0109 0.9894 1.0234
dp6 1.0115 0.0178 0.9975 1.0540
sz 1.0000 0.0000 1.0000 1.0000
szdp 1.0249 0.0212 1.0097 1.0744
szdpupd 1.0442 0.0354 1.0145 1.1241

RCV1
nbase 1.0017 0.0051 0.9909 1.0086
dp6 1.0090 0.0061 1.0027 1.0215
sz 1.0000 0.0000 1.0000 1.0000
szdp 1.0104 0.0055 1.0029 1.0212
szdpupd 1.0240 0.0137 1.0108 1.0515

Execution times for each configuration were normalized by re-
spective execution times of the sz configuration. We present the
mean, standard deviation (std), minimum and maximum of ex-
periment results across all ε values, given h = 213, η = 25K
and ζ = 1M input parameters. The best mean performance is
highlighted with bold.

eral. The combined scenario szdp did not perform better than
the sz scenario on average. The results in the remainder of this
work assume the sz configuration.

In general, the index update strategy did not improve per-
formance. For some datasets, its execution was 1.22x–1.40x
slower than that of the szdp configuration, which effected the
same pruning without updating the index. The worse efficiency
is likely due to loss of cache locality having to interrupt travers-
ing inverted lists to update their start pointer, as well as copying
the list of pointers for each thread, which in pL2AP occurs for
each constructed inverted index.

Comparison with serial methods. We compared the execution
time of all parallel methods, executed with 24 threads, with
the best serial execution time achieved by any of the serial al-
gorithms. Figure 15 and Table 7 show the results of this ex-
periment. In all cases, pL2AP had the best execution time of
all parallel methods, achieving serial speedups of 12x–34x for
our three datasets. Compared to previously published paral-
lel baselines, pL2AP executed 7x–238x faster. While pL2APrr
uses the same type of pruning as pL2AP, it traverses the entire
inverted index during each query and, as a result, cannot per-
form as well. Instead, by using tiling and other optimizations
that promote cache locality, pL2AP is able to achieve very good
speedup for datasets with long inverted index lists. At high sim-
ilarity thresholds, however, pL2AP is able to prune candidates
quickly and does not need to traverse many candidate and query
vector features, rendering our cache locality optimizations less
effective.
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Figure 15: Execution times of parallel methods and the best serial alternative,
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Table 7: ε-NNG construction efficiency comparison.
method ε = 0.3 0.5 0.7 0.9

WW200
serial 24923.36 7942.84 2173.20 371.19
pIdxJoin 8746.13 8824.70 8795.95 8797.46
pAPT 9766.05 8195.22 6901.25 5857.95
pL2APrr 2329.08 686.88 222.51 47.65
pL2AP 801.98 267.44 85.86 25.29

WW500
serial 2782.03 979.62 363.78 84.16
pIdxJoin 1279.46 1149.38 1276.69 1273.83
pAPT 1056.98 1076.20 997.40 918.88
pL2APrr 127.49 52.28 24.95 11.24
pL2AP 97.41 37.93 16.74 6.85

RCV1
serial 6122.15 1877.35 410.25 49.82
pIdxJoin 985.89 976.48 972.89 973.98
pAPT 1338.23 916.89 627.58 433.42
pL2APrr 462.48 161.32 39.76 6.48
pL2AP 180.79 56.74 14.51 3.30

Values represent execution times, measured in seconds. All methods except
serial were executed with 24 threads. The serial values represent the best
execution time of any serial method, which in all cases was achieved by L2AP.

As expected, the pIdxJoin algorithm, which does not per-
form any pruning, was very slow in comparison to the other
parallel methods. It performed very poorly, much slower even
than L2AP, the fastest serial method, potentially due to the high
data dimensionality. The pAPT method of Awekar and Sama-
tova was also slow in our experiments. It was not able to prune
as many candidates as pL2AP in general, and ended up perform-
ing many more unnecessary similarity computations.

Strong scaling. Figure 16 shows the strong scaling results from
our experiments. The amount of work pL2AP does when pro-
cessing each query increases as the threshold ε decreases. At
high values of ε, many of the objects never become candidates
for a query due to the idx and rs bounds in our method, and
pL2AP is able to quickly dismiss candidates. For example, the
size of the candidate list when ε = 0.9 is 0.5–4.0% of the can-
didate list size when ε = 0.3. As a result, the cache locality
improvements in pL2AP are not as beneficial, resulting in less
pronounced scaling at ε = 0.9. On the other hand, pL2AP shows
linear scaling at ε = 0.3.

It is interesting to note that pAPT and pL2APrr both scale
poorly above twelve threads. This may be an indication of
thrashing, which is causing threads to waste time waiting for
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Load Balance. In order to test the effectiveness of the dynamic
task partitioning approach in pL2AP, we measured the amount
of time each thread spent searching for neighbors. Figure 17
shows the percent load imbalance averaged over all ε values,
in experiments with consistent parameters (nt = 24, h = 213,
η = 25K, and ζ = 1M ). Our method shows little imbalance
between the threads, much less than 1% for our datasets.

6.2. PL2Knng

Our k-NNG construction experiment results are organized
along two directions. First, we present results from evaluating
the accuracy and efficiency of our parallel approximate method,
pL2Knng-a, in comparison to two state-of-the-art approximate
baselines. Second, we present results from evaluating our exact
method, pL2Knng. We measure serial efficiency improvements
compared to the original L2Knng algorithm, study our method’s
sensitivity to parameter choices, compare the efficiency and
strong scaling characteristics of pL2Knng with parallel and ap-
proximate baselines, and study load imbalance in our method.
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Figure 18: k-NNG construction effectiveness.

6.2.1. Approximate k-NNG construction

Effectiveness comparison. As a way to compare the effec-
tiveness of the approximate methods, we executed each for
µ ∈ {1k, . . . , 10k}, where µ is the size of the candidate list
each method considers. Figure 18 shows the results for two
datasets, RCV1 and WW500, and two k values, k ∈ {50, 100}.
The best results in each quadrant of the figure are those in the
lower right corner, representing high recall achieved in a short
amount of time. We compared pL2Knng-a under two neigh-
borhood update scenarios, γ ∈ {0, 3}, denoted by the sub-
script in the method name. Ignoring neighborhood enhance-
ment in pL2Knng-a (γ = 0) leads to moderate recall faster than
any other method. Executing even a few enhancement rounds
(γ = 3) leads to almost perfect recall in pL2Knng-a in less time
than either pGF or NN-Descent.

Figure 19: Approximate k-NNG construction efficiency.

Efficiency comparison. In a different experiment, we compared
minimum execution times required for each method to achieve
high recall (at least 95%), for k ranging from 10 to 500. We
executed each method under a wide range of parameters to find
its best execution time for each k value. Figure 19 shows the
execution times (left) and speedups over the best serial approx-
imate method (right) for each of the methods. Our method,
pL2Knng-a, outperformed the best baseline by 1.5x – 21.7x.
NN-Descent performed well on the RCV1 dataset, but was not
competitive for the Wikipedia based datasets, likely due to high
average number of non-zeros present in each vector in those
datasets and the high number of similarity comparisons the
method performs. NN-Descent was unable to find a k-NNG
with high enough recall for k ∈ {10, 25} for the WW200
dataset, probably due to its random choice of initial neighbors.
Given its heuristic choice for initial neighbors, pGF performed
well for small k values, but its execution time quickly increased
with k due to the iterative local joins that the method performs.

6.2.2. Exact k-NNG construction
Serial improvement comparison. In order to gauge the effi-
ciency improvements to our method that we described in Sec-
tion 3.2, we compared the serial execution of our updated
L2Knng variants against the original ones described in [4], for
k ∈ {10, 25, 50, 75, 100}. We executed all methods with γ = 1
and tuned µ to achieve 95% recall for all approximate methods.
Table 8 shows the results of this experiment, as speedup of the
enhanced L2Knng variants. Improvements over 1.5x are pre-
sented in bold. While our updates lead to modest improvements
for approximate graph construction, they contribute to achiev-
ing 1.44x – 1.73x speedup in the case of the exact version of
L2Knng.

Table 8: Efficiency improvement in L2Knng.
dataset method k=10 25 50 75 100
WW200 L2Knng-a 1.10 1.26 1.18 1.21 1.15
WW200 L2Knng 1.63 1.68 1.71 1.70 1.70
WW500 L2Knng-a 1.31 1.27 1.35 1.26 1.31
WW500 L2Knng 1.49 1.60 1.62 1.73 1.69
RCV1 L2Knng-a 1.09 1.15 1.18 1.23 1.39
RCV1 L2Knng 1.46 1.50 1.49 1.54 1.44

Parameter sensitivity. Efficiency in the execution of our paral-
lel method can be affected by our two parameters, the block
synchronous query set size η and the inverted index block
size ζ. To gauge the effects of these parameters on our algo-
rithm execution, we tested pL2Knng on the RCV1 dataset in
all combinations of k ∈ {10, 100, 500}, η ∈ {10K, 25K},
and ζ ∈ {0.5M, 1M, 5M, 10M}. For all experiments, we
chose γ = 1, and µ = 2k. We present the results of this
experiment in Table 9, as slowdown values compared to the
η = 25K, ζ = 1M execution for each k value. The difference
in performance shown in the cmp column for each k value is
generally small, less than 1.5x slowdown in most cases, show-
ing that our method is not greatly affected by bad choices in
these parameters.
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Table 9: Parameter sensitivity analysis in pL2Knng.
k=10 k=100 k=500

η ζ cmp η ζ cmp η ζ cmp
10k 0.5M 0.98 10k 0.5M 0.99 10k 0.5M 1.15
10k 1M 1.03 10k 1M 1.02 10k 1M 1.18
10k 5M 1.60 10k 5M 1.43 10k 5M 1.42
10k 10M 1.80 10k 10M 1.54 10k 10M 1.49
25k 0.5M 0.95 25k 0.5M 0.98 25k 0.5M 1.14
25k 1M 1.00 25k 1M 1.00 25k 1M 1.00
25k 5M 1.57 25k 5M 1.41 25k 5M 1.41
25k 10M 1.77 25k 10M 1.51 25k 10M 1.49

Efficiency comparison. Figure 20 shows the efficiency com-
parison between pL2Knng and our efficient exact baseline,
pKIdxJoin. The left side of the figure shows execution times
for the methods, while the right side shows speedups of the
methods over the best serial method at each k value. Our
method significantly outperforms pKIdxJoin, especially for
small k values. Table 10 shows the execution times for all ex-
act and approximate methods, where parameters for approxi-
mate methods were tuned to achieve a minimum of 95% recall.
Note that exact methods have 100% recall. Our exact method,
pL2Knng, is more efficient than both approximate baselines for
the Wikipedia datasets, and only 2.2x slower for the highest k
value in the RCV1 dataset. On the other hand, our approxi-
mate method, pL2Knng-a, greatly outperforms both exact and
approximate baselines.

Figure 20: Exact k-NNG construction efficiency.

Strong scaling. Figure 21 shows the strong scaling character-
istics of the exact methods we compared, for k ∈ {10, 100}.
Our method scales linearly up to 16 threads, outperforming
pKIdxJoin in all experiments. While pKIdxJoin also uses
cache tiling, it shows decreased performance for high numbers
of threads. The individual thread work unit in pKIdxJoin con-
sists of finding the k-nearest neighbors in an index block and
merging that list of neighbors with best already found k-nearest
neighbors. The strategy of maintaining the k-nearest neighbors
in heap data structures, combined with the cooperative neigh-

Table 10: k-NNG construction efficiency comparison.
method k = 10 50 100 300 500

WW200
pKIdxJoin 14562.36 14614.19 14428.61 14632.32 15451.55
pL2Knng 1264.42 1999.10 2348.14 3120.61 3613.19
pGF 1291.51 2088.37 3043.09 10052.79 19528.90
NN-Descent N/A 23800.08 15711.01 12807.02 17054.50
pL2Knng-a 59.51 157.12 253.31 604.02 962.25

WW500
pKIdxJoin 1768.80 1669.78 1781.14 1793.87 1835.50
pL2Knng 199.34 318.33 387.88 528.91 604.73
pGF 217.58 337.73 470.03 1227.60 2538.85
NN-Descent 3727.96 1891.65 1645.84 1943.84 1934.60
pL2Knng-a 13.16 33.18 61.82 158.42 252.87

RCV1
pKIdxJoin 1766.15 1774.28 1768.21 1862.52 2078.30
pL2Knng 137.22 231.52 301.52 468.87 581.71
pGF 191.71 866.42 2211.11 5894.57 11145.61
NN-Descent 254.74 271.19 261.50 265.89 268.37
pL2Knng-a 25.59 29.20 46.63 121.54 183.62

Figure 21: Strong scaling of exact k-NNG construction methods.

borhood update strategy in pL2Knng, shows superior perfor-
mance which is maintained even as the number of threads in
increased.

Load balance. As an alternate way to characterize the parallel
performance of pL2Knng, we measured the load imbalance in
the different sections of our method: initial graph construction
(IG), graph enhancement (GE), candidate generation (CG), and
candidate verification (CV). Table 11 shows the time and per-
cent of imbalance in our experiments, for k ∈ {10, 100, 500}.
Our method spends the majority of its time in the filtering sec-
tions (CG and CV), which display very good load balance in
general, less than 1% on average. The approximate construc-
tion of the graph shows slightly worse imbalance in the IG
stage, up to 12.71%. The IC stage of the method accounted
for 6 – 24 % of the overall execution time in our experiments.
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Table 11: Load imbalance in pL2Knng.
time (s) % imbalance

k IG GE CG CV IG GE CG CV
RCV1

10 33.11 1.01 99.91 32.98 1.83 1.33 0.19 0.78
100 35.98 20.51 217.67 66.11 11.28 2.23 0.07 0.34
500 175.35 84.85 359.22 98.96 12.47 5.42 0.16 0.52

WW200
10 74.60 6.02 1176.66 125.56 0.73 0.30 0.12 0.60
100 158.57 144.79 1955.26 165.52 4.15 0.30 0.11 1.59
500 667.56 536.71 2711.16 194.48 12.71 0.98 0.14 1.67

WW500
10 11.96 2.15 175.49 10.46 0.21 0.09 0.14 1.06
100 39.87 35.81 301.42 12.91 2.71 0.11 0.22 1.70
500 171.55 142.41 422.11 18.82 9.41 0.49 0.15 1.57

6.3. Discussion
The experiments in Section 6 show that both pL2AP and

pL2Knng greatly outperform state-of-the-art baselines and scale
linearly when increasing the number of processing units. For
the ε-NNG construction problem, the threshold ε plays a big
role in performance. For ε = 0.9, pL2AP was able to build the
neighborhood graph for the 804,414 documents in the RCV1
dataset in 3.30 seconds using 24 threads, compared to 433.42
seconds for the best parallel alternative. The success of these
methods is primarily due to the aggressive pruning of the search
space, eliminating the need to compute similarities for many
pairs of objects, and discontinuing that computation for many
others as soon as it is clear they will not be nearest neighbors.
The best filtering in pL2AP is based on indexing a small sub-
set of the object non-zeros, which in turn allows ignoring many
candidate objects that only have features in common with the
query in the non-indexed part of the vector. This strategy works
especially well for high similarity thresholds, but looses some
effectiveness as ε → 0, causing an increase in the number of
candidate objects. Most of those objects are eventually pruned,
yet some work must first be done to vet those candidates. The
k-NNG construction problem is actually more difficult from the
perspective of filtering. We have found that, even for small val-
ues of k (e.g., 1 or 5), there are some objects whose most dis-
similar nearest neighbor has a very small similarity (< 0.01).
In this case, to ensure correctness, most of the object’s non-
zeros will be indexed and many dot-products will have to be
computed for the object due to the low filtering threshold.

7. Related Work

Having been studied for over a decade, the APSS problem
has given rise to many serial solutions, some of which were
described in Section 3. In a previous work [3], we gave an
overview of existing methods and analyzed their pruning per-
formance.

The size of data that need to be analyzed has increased dra-
matically in recent years, from megabytes to gigabytes (e.g.,
online shopping customer profiles) and terabytes (e.g., web
document collections, DNA sequencing data). Traditional
NNG construction methods could not scale to sets of object this
large. Given the growing popularity of cloud computing, some

of the traditional NNS methods were ported to cloud program-
ming frameworks developed for dealing with big data (e.g.,
Hadoop, Spark) [1, 2, 14, 18, 31, 38, 39, 43, 46]. Most of the so-
lutions use the MapReduce [20] framework and can be split into
two categories. Many rely on the framework’s built-in features
to aggregate (reduce) partial similarities of object pairs com-
puted in mappers [10, 19, 25, 33]. The computation efficiency
can be greatly increased by first generating an inverted index
for the set of objects, which can be done using one MapReduce
task. The postings in the inverted index lists can then be com-
bined with features in the object vectors or with other postings
in the same list to generate partial similarity scores. While some
pruning strategies can be used to avoid generating some partial
scores, these methods often suffer from high communication
costs which make then inefficient for large datasets [2].

The second category of MapReduce methods use a mapper-
only scheme, with no reducers [1, 2, 43]. They partition the
set of objects into subsets (blocks) and use serial APSS meth-
ods to find pairwise similarities of objects in block pairs. Cer-
tain block comparisons can be eliminated by relying on block-
level filtering techniques, such as computing the similarity of
the objects made up of the maximum values for features in the
two blocks. When comparing two blocks, Alabduljalil et al.
proposed locally building a full inverted index for one of the
blocks and scanning through query objects in the other block
to compute their similarity. They found that filtering candi-
dates was detrimental to execution speed and suggested remov-
ing this optimization, rendering their local search identical to
that performed in one tile by our naı̈ve baseline, pIdxJoin.
Within this context, they examined distributed load balancing
strategies [43] and cache-conscious performance optimizations
for the local searches [1]. They provided a cost based analy-
sis aimed at finding sizes for comparison blocks that maximize
cache locality. Their analysis is based on a full inverted in-
dex and mean vector and inverted list lengths, which can vary
greatly in real datasets, as evidenced by the high σ values in
Table 4.

Existing shared memory cosine APSS solutions are limited
to the pAPT algorithm by Awekar and Samatova, detailed in
Section 4. Jiang et al. [29] provided a parallel solution for the
related problem of string similarity joins with edit distance con-
straints.

There have been few k-NNG construction algorithms that are
designed to address cosine similarity. Park et al. [37] describe
a heuristic serial approximate method which prioritizes com-
puting similarities between objects with high weight features in
common. In their shared memory parallel method NN-Descent,
Dong et al. [24] follow an iterative neighborhood improvement
strategy based on the intuition that similar objects may be found
among the neighbors of a query object’s neighbors. A number
of methods have been devised for the related problem of doc-
ument retrieval [12, 22, 23, 40, 42], yet our previous work [4]
showed they did not work well for the graph construction task.
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8. Conclusions and Future Work

In this work, we presented pL2AP and pL2Knng, our shared
memory parallel solutions to the ε-NNG and k-NNG construc-
tion problems. Our methods use several cache-tiling optimiza-
tions, combined with fine-grained dynamically balanced par-
allel tasks, to solve the problems up to two orders of magni-
tude faster than state-of-the-art baselines. In the current work,
we have focused on tiles that fit in the last-level cache. It
would be interesting to evaluate strategies for maximizing the
reuse of the L1 and L2 caches in similarity search. Addition-
ally, while choosing a cache-tile size for our methods is fairly
straight-forward, we may investigate designing cache-oblivious
versions of the methods. Finally, we plan to investigate dis-
tributed algorithms for efficiently constructing cosine nearest
neighbor graphs.
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