
Noname manuscript No.
(will be inserted by the editor)

Efficient Identification of Tanimoto Nearest Neighbors
All Pairs Similarity Search Using the Extended Jaccard Coefficient

David C. Anastasiu · George Karypis

Received: date / Accepted: date

Abstract Tanimoto, or extended Jaccard, is an important
similarity measure which has seen prominent use in fields
such as data mining and chemoinformatics. Many of the
existing state-of-the-art methods for market basket analy-
sis, plagiarism and anomaly detection, compound database
search, and ligand-based virtual screening rely heavily on
identifying Tanimoto nearest neighbors. Given the rapidly
increasing size of data that must be analyzed, new algo-
rithms are needed that can speed up nearest neighbor search,
while at the same time providing reliable results. While
many search algorithms address the complexity of the task
by retrieving only some of the nearest neighbors, we pro-
pose a method that finds all of the exact nearest neighbors
efficiently by leveraging recent advances in similarity search
filtering. We provide tighter filtering bounds for the Tani-
moto coefficient and show that our method, TAPNN, greatly
outperforms existing baselines across a variety of real-world
datasets and similarity thresholds.

This work was supported in part by NSF (IIS-0905220, OCI-
1048018, CNS-1162405, IIS-1247632, IIP-1414153, IIS-1447788),
Army Research Office (W911NF-14-1-0316), Intel Software and Ser-
vices Group, and the Digital Technology Center at the University of
Minnesota. Access to research and computing facilities was provided
by the Digital Technology Center (DTC) and the Minnesota Super-
computing Institute (MSI). This paper is an extended version of the
DSAA’2016 paper with the same name [1].

David C. Anastasiu
Department of Computer Engineering
San José State University, San José, CA, USA
Tel.: +1-408-924-2938
E-mail: david.anastasiu@sjsu.edu

George Karypis
Department of Computer Science and Engineering
University of Minnesota, Twin Cities, MN, USA
E-mail: karypis@cs.umn.edu

1 Introduction

Tanimoto, or extended Jaccard, is an important similarity
measure which has seen prominent use both in data min-
ing and chemoinformatics. While Strehl and Ghosh note
that “there is no similarity metric that is optimal for all ap-
plications” [2], Tanimoto was shown to outperform other
similarity functions in text analysis tasks such as cluster-
ing [3–5], plagiarism detection [6–8], and automatic the-
saurus extraction [9]. It has also been successfully used to
visualize high-dimensional datasets [2], analyze market bas-
ket transactional data [10], recommend items [11], and de-
tect anomalies in spatiotemporal data [12].

In the chemoinformatics domain, data mining and ma-
chine learning approaches are increasingly used to boost
the effectiveness of the drug discovery process [13]. Fu-
eled by the generally valid premise that structurally similar
molecules exhibit similar binding behavior and have simi-
lar properties [14], many chemoinformatics methods use the
computation of pairwise similarities as a kernel within their
algorithms. Virtual screening (VS), for example, uses simi-
larity search, clustering, classification, and outlier detection
to identify structurally diverse compounds that display sim-
ilar bioactivity, which form the starting point for subsequent
chemical screening [15].

The numeric representation of chemical compounds has
been of great interest to the chemoinformatics community.
Initial studies focused on capturing the presence or absence
of features within the compound and represented a com-
pound as a binary, or bit vector, referred to as a fingerprint.
In recent years, frequency (or counting) vectors, which cap-
ture how many times a feature is present, and real-valued
vectors, called descriptors, have gained popularity [13, 16].
Arif et al. [17], for example, investigated the use of inverse
frequency weighting of features in frequency descriptors for

2 David C. Anastasiu, George Karypis

similarity-based VS and found marked increases in screen-
ing effectiveness in some circumstances.

In this work, we address the problem of computing pair-
wise similarities with values of at least some threshold ε ,
also known as the all-pairs similarity search (APSS) prob-
lem, and focus on objects represented numerically as non-
negative real-valued vectors. Examples of such objects in-
clude text documents [18], user and item profiles in recom-
mender systems [11], market basket data [10], and most ex-
isting chemical descriptors. We use the Tanimoto coefficient
to measure the similarity of two objects.

Within the chemoinformatics community, a great deal
of effort has been spent trying to accelerate pairwise simi-
larity computations using the Tanimoto coefficient. Swami-
dass and Baldi [19] described a number of bounds for fast
exact threshold-based Tanimoto similarity searches of bi-
nary and integer-based vector representations of chemical
compounds. These bounds allow skipping many object com-
parisons that will theoretically not be similar enough to be
included in the result, a technique often referred to as fil-
tering, or pruning. Other pruning methods relied on hash-
ing techniques [20, 21] or tree-based data structures [22, 23]
to accelerate neighbor searches. However, most recent ap-
proaches focus on speeding up chemical searches using in-
verted index data structures borrowed from information re-
trieval [20, 24, 25].

Data mining methods initially designed to efficiently
search databases [26] or the Web [27] were later adapted
to solve the APSS problem [28]. Most of the existing work
addresses either binary vector object representations [29–
31] or cosine similarity [32, 33]. Nevertheless, Bayardo et
al. [28] and Lee et al. [34] show how their cosine filtering-
based APSS methods can be extended to the Tanimoto coef-
ficient for binary- and real-valued vectors, respectively. Fo-
cusing on real-valued vectors, Kryszkiewicz [35–37] proves
several theoretic bounds on the Tanimoto similarity and
sketches an inverted index-based algorithm for efficient sim-
ilarity search.

We describe a new method for Tanimoto APSS of non-
negative real-valued vectors, named TAPNN, which solves
the problem exactly, finding all pairs of objects with a
Tanimoto similarity of at least some input threshold ε .
Our method extends the indexing techniques prevalent in
the literature with tighter bounds on the similarity of two
vectors, which yield dramatic performance improvements.
We experimentally evaluated our method against several
baselines on chemical datasets derived from the Molec-
ular Libraries Small Molecule Repository (MLSMR) and
the SureChEMBL database, and on text collections com-
prised of newswire stories and USPTO patents. We show
that TAPNN significantly outperforms baselines for both
chemical and text datasets. In particular, it was able to find
all near-duplicate pairs among 5M SureChemBL chemical

compounds in minutes, using a single CPU core, and is over
two orders of magnitude more efficient than linear search in
general at ε = 0.99.

The remainder of the paper is organized as follows. We
give a formal problem statement and describe our notation
in Section 2. In Section 3, we present our algorithm. In Sec-
tion 4, we describe the datasets, baseline algorithms, and
performance measures used in our experiments. We present
our experiment results and discuss their implications in Sec-
tion 5, and Section 6 concludes the paper.

2 Problem statement

Given a set of objects D = {d1, d2, . . . , dn}, such that each
object di is represented by a (sparse) nonnegative vector in
an m dimensional feature space, and a minimum threshold ε
on the similarity of two vectors, we wish to find the set of all
pairs (di, dj) satisfying di, dj ∈ D, di , dj , and sim(di, dj) ≥
ε , and compute their similarities. Let di indicate the feature
vector associated with the ith object and di, j its value (or
weight) for the jth feature. We measure vector similarity as
the Tanimoto coefficient for real-valued vectors, computed
as,

T(di, dj) =
〈
di, dj

〉
‖di ‖2 + ‖dj ‖2 −

〈
di, dj

〉 , (1)

where
〈
di, dj

〉
=

∑m
l=1 di,l × dj,l denotes the vector dot-

product, and ‖di ‖ =
√〈

di, di

〉
denotes its Euclidean norm,

or length. For a given object di , we call an object dj a neigh-
bor of di if sim(di, dj) ≥ ε .

The majority of feature values in sparse vectors are 0.
As a result, a vector di is generally represented as the set
of all pairs (j, di, j) satisfying 1 ≤ j ≤ m and di, j > 0.
For a set of objects represented by sparse vectors, an in-
verted index representation of the set is made up of m lists,
I = {I1, I2, . . . , Im}, one for each feature. List Ij contains
pairs (di, di, j), also called postings in the information re-
trieval literature, where di is an indexed object that has a
nonzero value for feature j, and di, j is that value. Postings
may store additional statistics related to the feature within
the object it is associated with.

The APSS problem seeks, for each object in D, all
neighbors with a similarity value of at least ε . The similarity
graph of D is a graph G = (V, E) where vertices correspond
to the objects and an edge (vi, vj) indicates that the jth ob-
ject is in the neighborhood of the ith object and is associated
with a weight, namely the similarity value sim(di, dj).

Given a vector di and a dimension p, we will de-
note by d≤pi the vector (di,1, . . . , di,p, 0, . . . , 0), obtained by
keeping the p leading dimensions in di , which we call
the prefix (vector) of di . Similarly, we refer to d>pi =

Efficient Identification of Tanimoto Nearest Neighbors 3

Fig. 1 Comparison of cosine and Euclidean proximity measures.

(0, . . . , 0, di,p+1, . . . , di,m) as the suffix of di , obtained by set-
ting the first p dimensions of di to 0. Vectors d<pi and d≥pi

are analogously defined. Table 1 provides a summary of the
notation used in this work.
Table 1 Notation used throughout the paper

Description
D set of objects
di the ith object
di vector representing ith object
di, j value for jth feature in di

d≤pi , d>p
i prefix and suffix of di at dimension p

d≤i , d
>
i un-indexed/indexed portion of di

d̂i normalized version of di

I inverted index
f j vector with jth feature values from all vectors d̂i

ε minimum desired similarity

3 Methods

Tanimoto has several advantages that make it ideally suited
for measuring proximity in sparse high-dimensional data.
It can be efficiently computed via sparse dot-products for
asymmetric data, and it takes into consideration both the an-
gle and the length of vectors when indicating their proxim-
ity. Consider, for example, the vectors in Figure 1. When
comparing vector a against b1 and b2, cosine similarity re-
ports the cosine of the angle θ1, which is the same for both
sim(a, b1) and sim(a, b2). On the other hand, the lengths
‖a − b1‖ and ‖a − b2‖, denoted by the blue lines with the
same labels, are obviously different, showing that Euclidean
distance can capture the length difference between b1 and
b2 in their comparison with a. When comparing a against b1
and b3, however, the lengths ‖a−b1‖ and ‖a−b3‖ are iden-
tical, and Euclidean distance cannot tell the difference be-
tween the two vectors with respect to a. The angles between
a and the two vectors, θ1 and θ2, are obviously different, so
cosine similarity is able to capture the angle difference be-
tween a and {b1, b3}. By definition (Equation 1), Tanimoto
coefficient captures both the angle difference between the
two vectors, via the dot-products, and the difference in their
lengths, via the square lengths in the denominator.

Fig. 2 Pruning strategy in TAPNN.

In certain domains, capturing both angle and length dif-
ferences can lead to improved performance. Plagiarism de-
tection seeks to find sections of documents that may have
been copied from other documents. If a section of a query
document was “Veni, vidi, vici. Veni! Vidi! Vici!,” it would
not be considered as plagiarizing a candidate document con-
taining “Veni, vidi, vici!” if the employed proximity mea-
sure was Euclidean distance and the objects were repre-
sented as term frequency vectors. However, both Tanimoto
and Cosine would be able to identify the sections as very
similar and thus a potential plagiarism case. In the chemoin-
formatics domain, two compounds with very similar pro-
portions of base atoms may be considered quite similar ac-
cording to Cosine similarity, but may have a very different
structure due to the presence of more overall atoms. Both
Euclidean distance and Tanimoto coefficient would be able
to discern these differences.

Solving the APSS problem is a difficult challenge, re-
quiring O(n2) similarities to be computed. In the remainder
of this section, we show how we can improve search per-
formance by taking advantage of several properties of the
problem input, delineated in Figure 2. In Section 3.1, we
describe how our method, TAPNN, ignores many similarity
computations, namely those pairs of objects that do not have
any features in common, by leveraging the sparsity structure
of the input data. We then demonstrate how, based on the
length of each query vector and the input threshold ε , our
method efficiently ignores many of the remaining potential
candidates whose lengths are too short of too long. In Sec-
tion 3.3, we describe how TAPNN further ignores many can-
didates whose angles differ greatly from that of the query.
Finally, in Section 3.4, we discuss how an upper bound es-
timate of the angle between a query and a candidate object,
in conjunction with the difference in their lengths, can fur-
ther be used to ignore candidates. The remaining number of
object pairs whose similarity is exactly computed is a small
portion of the initially considered O(n2) object pairs, and
only slightly larger than the number of true neighbors, those
in the output of our method.

4 David C. Anastasiu, George Karypis

3.1 A basic indexing approach

One approach to find neighbors for a given query object that
has been reported to work well in the similarity search litera-
ture [20,24,25,28,32–34] has been to use an inverted index,
which makes it possible to avoid computing similarities be-
tween the query and objects that do not have any nonzero
features in common with it. A map-based data structure,
called an accumulator, can be used to compute the dot-
product of the query with all objects encountered while it-
erating through the inverted lists for nonzero features in the
query.

Figure 3 shows how an inverted index and accumulator
data structures can be used to compute dot-products for the
query object d3 with all potential neighbors of d3. We call an
object that has a nonzero accumulated dot-product a candi-
date, and forgo computing the query object self-similarity,
which is by definition 1. Using precomputed lengths for
the object vectors, the dot-products of all candidates can be
transformed into Tanimoto coefficients according to Equa-
tion 1 and those coefficients at or above ε can be stored in
the output.

Fig. 3 Using an inverted index and accumulator to compute dot-
products.

One inefficiency with this approach is that it does not
take advantage of the commutativity property of the Tan-
imoto coefficient, computing sim(di, dj) both when accu-
mulating similarities for di and for dj . To address this is-
sue, authors in [28] and [33] have suggested building the
index dynamically, adding the query vector to the index
only after finding its neighbors. This ensures that the query
is only compared against previously processed objects in a
given processing order. We suggest a different approach that
is equally efficient given modern computer architectures.
Given an object processing order, we first re-label each doc-
ument to match the processing order, then build the inverted
index fully, adding objects to the index in the given process-
ing order. The result will be inverted lists sorted in non-
decreasing order of document labels. Then, when iterating
through each inverted list, we can stop as soon as the en-
countered document label is greater or equal to that of the
query. Since the document label will have already been read

from memory to perform the accumulation operation and
will be resident in the processor cache, the additional check
against the value of the query label will be very fast, and
will be hidden by the latency associated with loading the
next cache line from memory.

3.2 Length-based pruning

Kryszkiewicz [35] has shown that some of the objects whose
vector lengths are either too small or too large compared
to that of the query object cannot be its neighbors and can
thus be ignored. An object dj cannot be a neighbor of a
query object di if its length ‖dj ‖ falls outside the range
[(1/α)‖di ‖, α‖di ‖], where ‖di ‖ is the length of the query
vector and

α =
1
2

©«
(
1 +

1
ε

)
+

√(
1 +

1
ε

)2
− 4ª®¬ . (2)

In Section 3.4, we show this bound is actually the limit of
a new class of Tanimoto similarity bounds we introduce in
this paper. Here, we will show how candidate length pruning
can be efficiently integrated into our indexing approach.

A given object will be encountered as many times in the
index as it has nonzero features in common with the query.
To avoid checking its length against that of the query each
time, we could use a data structure, such as a map or bit
vector, to mark when a candidate has been checked. While
checking this data structure may be less demanding than a
multiplication and a comparison, it can actually be slower
if the number of candidates is high and the data structure
does not fit in the processor cache. Instead, we propose to
process objects in non-decreasing vector length order. By re-
labeling objects as discussed earlier, objects whose lengths
are too short will be potentially found at the beginning of the
inverted lists, while objects whose lengths are too long can
be automatically ignored, as they will come after the query
object in the processing order. Note also that, for an object
dj following di in the processing order,

1
α
‖dj ‖ ≥

1
α
‖di ‖,

since ‖dj ‖ ≥ ‖di ‖ and both vector lengths and α are non-
negative real values. As such, the label of the maximum
candidate that can be ignored will be non-decreasing. Our
approach thus uses a list of starting pointers, one for each
inverted list, and updates the starting pointer of a list each
time a new candidate whose length is too small is found in
it.

Figure 4 shows an example of the utility of our process-
ing order re-labeled inverted index, coupled with the use
of inverted index starting pointers. In the example, while
finding neighbors for objects d3 and d4, objects d1 and d2

Efficient Identification of Tanimoto Nearest Neighbors 5

Fig. 4 Efficient length pruning via re-labeling and starting points.

were found to be too short, respectively. The red horizontal
lines in the index structure represent the starting pointers in
the respective index lists, which were advanced while find-
ing neighbors for d3 and d4. When searching for potential
neighbor candidates for d5, objects d1 and d2 are automat-
ically ignored by iterating through the inverted lists f1, f2,
f4, and f5 from the current start pointers. In addition to the
skipped length check comparison between d5 and d1 and d2,
the method also benefits from fewer memory loads by iter-
ating through shorter inverted lists.

Algorithm 1 provides a pseudocode sketch for our basic
inverted index-based approach. The method first permutes
objects in non-decreasing vector length order and indexes
them. Then, for each query object dq , in the processing or-
der, the maximum object dmax satisfying (1/α)‖dmax ‖ <
‖dq ‖ is identified. When iterating through the jth inverted
list, TAPNN avoids objects in the list whose lengths have al-
ready been determined too small by starting the iteration at
index S[j], which is incremented as more objects are found
with small lengths. At the end of the accumulation stage, the
accumulator contains full dot-products between the query
and all objects that could be its neighbors. For each such
object, the algorithm computes the Tanimoto coefficient us-
ing the dot-product stored in the accumulator and adds the
object to the result set if its similarity meets the threshold.

3.3 Incorporating cosine similarity bounds

A number of recent methods have been devised that use sim-
ilarity bounds to efficiently solve the cosine similarity APSS
problem. Moreover, Lee et al. [34] have shown that, for non-
negative vectors and the same threshold ε , the set of Tani-
moto neighbors of an object is actually a subset of its set of
cosine neighbors. This can be seen from the formulas of the
two similarity functions.

T(di, dj) =
〈
di, dj

〉
‖di ‖2 + ‖dj ‖2 −

〈
di, dj

〉
C(di, dj) =

〈
di, dj

〉
‖di ‖‖dj ‖

Given a common numerator, it remains to find a relationship
between the denominators in the two functions. Since, for

Algorithm 1 TAPNN inverted index approach
1: function TAPNN-1(D, ε)
2: A← ∅ . accumulator
3: S ← ∅ . list starts
4: N ← ∅ . set of neighbors
5: Compute and store vector lengths for all objects
6: Permute objects in non-decreasing vector length order
7: for each q = 1, . . . , |D | s.t. ‖dc ‖ ≤ ‖dq ‖ ∀c ≤ q do
8: for each j = 1, . . . ,m s.t. dq, j > 0 do . Indexing
9: Ij ← Ij ∪ {(dq, dq, j)}

10: for each q = 1, . . . , |D | s.t. ‖dc ‖ ≤ ‖dq ‖ ∀c ≤ q do
11: Find label dmax of last object that can be ignored
12: for each j = 1, . . . ,m s.t. dq, j > 0 do
13: for each k = S[j], . . . , |Ij | do
14: (dc, dc, j) ← Ij [k]
15: if dc ≤ dmax then
16: S[j] ← S[j] + 1
17: else if dc ≥ dq then
18: break
19: else . Accumulation
20: A[dc] ← A[dc] + dq, j × dc, j

21: for each dc s.t. A[dc] > 0 do . Verification
22: Scale dot-product in A[dc] according to Equation 1
23: if A[dc] ≥ ε then
24: N ← N ∪ (dq, dc, A[dc])
25: return N

any real valued vector lengths, (‖di ‖−‖dj ‖)2 ≥ 0, it follows
that,

‖di ‖2 + ‖dj ‖2 − 2‖di |‖‖dj ‖ ≥ 0,

‖di ‖2 + ‖dj ‖2 − ‖di ‖‖dj ‖ ≥ ‖di ‖‖dj ‖,
‖di ‖2 + ‖dj ‖2 −

〈
di, dj

〉
≥ ‖di ‖‖dj ‖,

where the last equation follows from the Cauchy–Schwarz
inequality, which states that

〈
di, dj

〉
≤ ‖di ‖‖dj ‖. As a re-

sult, the following relationships can be observed between
the cosine and Tanimoto similarities of two vectors,

T(di, dj) ≤ C(di, dj),
T(di, dj) ≥ ε ⇒ C(di, dj) ≥ ε,
C(di, dj) < ε ⇒ T(di, dj) < ε.

One can then solve the Tanimoto APSS problem by first
solving the cosine APSS problem and then filtering out
those cosine neighbors that are not also Tanimoto neigh-
bors. Given the computed cosine similarity of two vectors
and stored vector lengths, the Tanimoto similarity can be
derived as follows.

T(di, dj) =

〈
di,d j

〉
‖di ‖ ‖d j ‖

‖di ‖2+‖d j ‖2−
〈

di,d j

〉
‖di ‖ ‖d j ‖

=

〈
di,d j

〉
‖di ‖ ‖d j ‖

‖di ‖2+‖d j ‖2
‖di ‖ ‖d j ‖ −

〈
di,d j

〉
‖di ‖ ‖d j ‖

Applying the definition for cosine similarity, we have

T(di, dj) =
C(di, dj)

‖di ‖2+‖d j ‖2
‖di ‖ ‖d j ‖ − C(di, dj)

. (3)

6 David C. Anastasiu, George Karypis

Note that

(‖di ‖ − ‖dj ‖)2 ≥ 0⇒
‖di ‖2 + ‖dj ‖2

‖di ‖‖dj ‖
≥ 2,

which provides a higher pruning threshold [34] when
searching for cosine neighbors given a Tanimoto similarity
threshold ε ,

T(di, dj) ≥ ε ⇒
C(di, dj)

2 − C(di, dj)
≥ ε

⇒ C(di, dj) ≥
2ε

1 + ε
= t (4)

Unlike the Tanimoto coefficient, cosine similarity is
length invariant. Vectors can thus be normalized as a pre-
processing step, which reduces cosine similarity to the
dot-product of the normalized vectors. Denoting by d̂i =

di/‖di ‖, the normalized version of the ith object vector,

C(di, dj) =
〈
di, dj

〉
‖di ‖‖dj ‖

=
〈
d̂i, d̂j

〉
.

This step, in fact, reduces the number of floating point op-
erations needed to solve the problem and is standard in co-
sine APSS methods. Note that the method outlined in Al-
gorithm 1 can also be applied to normalized vectors, adding
only a normalization step before indexing and replacing the
scaling factor in line 22, using Equation 3 instead of Equa-
tion 1.

In a recent work [33], we described a number of cosine
similarity bounds based on the `2-norm of prefix or suffix
vectors that have been found to be more effective than pre-
vious known bounds for solving the cosine APSS problem.
It may be beneficial to incorporate this type of filtering in
our method. However, some of the bounds we described in
that work rely on a different object processing order. Our
method, therefore, uses similar `2-norm-based bounds that
are processing order independent. This allows our method
to still take advantage of the vector length based filtering
described in Section 3.2. In the remainder of this section,
we will describe the `2-norm-based filtering in our method.

Normalized vector prefix `2-norm-based filtering

Given a fixed feature processing order and the prefix and
suffix of a query object at feature p, it is easy to see that,〈
d̂q, d̂c

〉
=

〈
d̂≤pq , d̂c

〉
+
〈
d̂>pq , d̂c

〉
≤ ‖d̂≤pq ‖‖d̂c ‖+

〈
d̂>pq , d̂c

〉
,

where the inequality follows from applying the Cauchy–
Schwarz inequality to the prefix dot-product. Since the max-
imum value of ‖d̂c ‖ is 1, the prefix dot-product can further
be upper-bounded by the length of the prefix vector,〈
d̂≤pq , d̂c

〉
≤ ‖d̂≤pq ‖. (5)

Another bound on the prefix dot-product can be obtained
by considering the maximum values for each feature among

all normalized object vectors. Let fj denote the vector of
all feature values for the jth feature within the normalized
vectors and mx the vector of maximum such feature values
for each dimension, defined as,

fj = (d̂1, j, d̂2, j, . . . , d̂n, j),
mx = (‖f1‖∞, ‖f2‖∞, . . . , ‖fm‖∞).

Then,〈
d̂≤pq , d̂c

〉
=

m∑
l=1

dq,l × dc,l ≤
m∑
l=1

dq,l × mxl ⇒〈
d̂≤pq , d̂c

〉
≤ 〈d̂≤pq ,mx〉. (6)

Combining the bounds in Equation 5 and Equation 6, we
obtain a bound on the prefix similarity of a vector with any
other object in D, which we denote by ps≤pq ,〈
d̂≤pq , d̂c

〉
≤ ps≤pq = min(‖d̂≤pq ‖, 〈d̂≤pq ,mx〉). (7)

We define ps<pq analogously.
Algorithm 2 describes how we incorporate cosine sim-

ilarity bounds within our method. Following examples
in [28] and [33], we use the ps bound to index only a few of
the nonzeros in each object. Note that, if ps<pq < t, with
t defined as in Equation 4, and an object dc has no fea-
tures in common with the query in lists Ij, p ≤ j ≤ m,
then its cosine similarity to the query will be below t, and
its Tanimoto similarity will then be below ε . Conversely, if〈
d̂>pq , d̂c

〉
> 0, the object may potentially be a neighbor.

By indexing values in each query vector starting at the in-
dex p satisfying ps≤pq ≥ t, and then iterating through the
index and accumulating, the nonzero values in the accu-
mulator will contain only the suffix dot-products,

〈
d̂q, d̂>c

〉
,

where d>c represents the indexed suffix for some object dc
found in the index. Once some value has been accumulated
for an object, we refer to it as a candidate. This portion of
the method can be thought of as candidate generation (CG)
and is similar in scope to the screening phase of many com-
pound search methods in the chemoinformatics literature.
Our method uses the un-indexed portion of the candidate,
d≤c , to complete the dot-product computation during the ver-
ification stage, before the scaling and threshold checking
steps. We call this portion of the method, which is akin to
the verification stage in other chemoinformatics methods,
candidate verification (CV).

Our method adopts a non-increasing inverted list size
(object frequency) order for processing features, which
heuristically leads to shorter lists in the inverted index. The
partial indexing strategy presented in the previous paragraph
improves the efficiency of our method in two ways. First,
objects that have nonzero values in common with the query
only in the un-indexed set of query features will be au-
tomatically ignored. Our method will not encounter such

Efficient Identification of Tanimoto Nearest Neighbors 7

an object in the index when generating candidates for the
query and will thus not accumulate a dot-product for it. Sec-
ond, the verification stage will require reading from mem-
ory only those sparse vectors for un-pruned candidates, it-
erating through fewer nonzeros in general than exist in the
un-indexed portion of all objects.

We use the ps bound in two additional ways to im-
prove the pruning effectiveness of our method. First, when
encountering a new potential object in the index during
the CG stage (A[dc] = 0), we only accept it as a candi-
date if ps≤ jq ≥ t. Note that we process index lists in re-
verse feature processing order in the CG and CV stages,
and A[dc] contains the exact dot-product

〈
d̂q, d̂> jc

〉
. There-

fore, if A[dc] = 0 and ps≤ jq < t, the candidate cannot be a
neighbor of the query object. Second, as a first step in veri-
fying each candidate, we check whether ps<c , the ps bound
of the candidate at its last indexed feature (line 10 in Al-
gorithm 2), added to the accumulated suffix dot-product, is
equal or greater than the threshold t. The value ps<c is an up-
per bound of the dot-product of the un-indexed prefix of the
candidate vector with any other vector in the dataset. Thus,
the candidate can be safely pruned if the check fails.

As in our cosine APSS method [33], after each accumu-
lation operation, in both the CG and CV stages of the algo-
rithm, we check an additional bound, based on the Cauchy–
Schwarz inequality. The objects cannot be neighbors if the
accumulated suffix dot-product, added to the upper bound
‖d̂< jq ‖‖d̂< jc ‖ of their prefix dot-product, cannot meet the
threshold t. We have tested a number of additional candidate
verification bounds described in the literature based on vec-
tor number of nonzeros, prefix lengths, or prefix sums of the
vector feature values, but have found them to be less efficient
to compute and in general less effective than our described
cosine pruning in a variety of datasets. The interested reader
may consult [28,32–34] for details on additional verification
bounds for cosine similarity.

3.4 New Tanimoto similarity bounds

Up to this point, we have used pruning bounds based on the
lengths of the un-normalized vectors and prefix `2-norms of
the normalized vectors to either ignore outright or stop con-
sidering (prune) those objects that cannot be neighbors for
a given query. We will now present new Tanimoto-specific
bounds which combine the two concepts to effect additional
pruning. First, we will describe a bound on the prefix length
of an un-normalized candidate vector, which we use during
candidate generation. Then, we will introduce a bound for
the length of the un-normalized candidate vector that relies
on cosine similarity estimates we compute in our method.

A bound on the prefix length of an un-normalized candidate
vector

Algorithm 2 TAPNN with cosine bounds
1: function TAPNN-2(D, ε)
2: A← ∅, S ← ∅, N ← ∅
3: t ← 2ε/(1 + ε)
4: Compute and store vector lengths for all objects
5: Permute objects in non-decreasing vector length order
6: for each q = 1, . . . , |D | s.t. ‖dc ‖ ≤ ‖dq ‖ ∀c ≤ q do
7: Normalize dq

8: for each j = 1, . . . ,m s.t. d̂q, j > 0 and ps
≤p
q ≥ t do

9: Ij ← Ij ∪ {(dq, d̂q, j, ‖d̂< j
q ‖)} . Indexing

10: Store ps<q

11: for each q = 1, . . . , |D | s.t. ‖dc ‖ ≤ ‖dq ‖ ∀c ≤ q do
12: Find label dmax of last object that can be ignored
13: for each j = m, . . . , 1 s.t. d̂q, j > 0 do . CG
14: for each k = S[j], . . . , |Ij | do
15: (dc, dc, j) ← Ij [k]
16: if dc ≤ dmax then
17: S[j] ← S[j] + 1
18: else if dc ≥ dq then
19: break
20: else if A[dc] > 0 or ps≤ jq ≥ t then
21: A[dc] ← A[dc] + d̂q, j × d̂c, j

22: Prune if A[dc] + ‖d̂< j
q ‖ ‖d̂< j

c ‖ < t

23: for each dc s.t. A[dc] > 0 do . CV
24: Prune if A[dc] + ps<c < t
25: for each j = m, . . . , 1 s.t. d̂≤c, j > 0 and dq, j > 0 do
26: A[dc] ← A[dc] + d̂q, j × d̂c, j

27: Prune if A[dc] + ‖d̂< j
q ‖ ‖d̂< j

c ‖ < t

28: Scale dot-product in A[dc] according to Equation 3
29: if A[dc] ≥ ε then
30: N ← N ∪ (dq, dc, A[dc])
31: return N

Recall that the dot-product of a query with a candidate
vector can be decomposed as the sum of its prefix and suf-
fix dot-products, which can be written as a function of the
respective normalized vector dot-products as,〈
dq, dc

〉
=

〈
d≤pq , dc

〉
+

〈
d>pq , dc

〉
=

〈
d̂≤pq , d̂c

〉
‖d≤pq ‖‖dc ‖ +

〈
d̂>pq , d̂c

〉
‖d>pq ‖‖dc ‖.

For an object that has not yet become a candidate (A[dc] =
0),

〈
d̂>pq , d̂c

〉
= 0, simplifying the expression to,〈

dq, dc

〉
=

〈
d̂≤pq , d̂c

〉
‖d≤pq ‖‖dc ‖.

From the expression T(dc, dq) ≥ ε , substituting the Tani-
moto formula in Equation 1, we can derive,〈
dq, dc

〉
≥ ε

1 + ε

(
‖dq ‖2 + ‖dc ‖2

)
‖d≤pq ‖ ≥

ε

1 + ε
‖dq ‖2 + ‖dc ‖2

‖dc ‖
〈
d̂≤pq , d̂c

〉
‖d≤pq ‖ ≥

ε

1 + ε
‖dq ‖2 + ‖d1‖2

‖dq−1‖ ps≤ jq

(8)

Equation 8 replaces the prefix dot-product
〈
d̂≤pq , d̂c

〉
with

the ps upper bound, which represents the dot-product of

8 David C. Anastasiu, George Karypis

the query with any potential candidate. Furthermore, tak-
ing advantage of the pre-defined object processing order in
our method, we replace the numerator candidate length by
that of the object with minimum length (the first processed
object, d1) and the denominator candidate length with that
of the object with maximum length (the last processed ob-
ject, dq−1). Since ‖d1‖2 ≤ ‖dc ‖2, ‖dq−1‖ ≥ ‖dc ‖, and
ps≤ jq ≥

〈
d̂≤pq , d̂c

〉
, the inequality holds.

We use the bound in Equation 8 during the candidate
generation stage of our method as a potentially more re-
strictive condition for accepting new candidates. It comple-
ments the ps bound in line 20 in Algorithm 2, which checks
whether new candidates can still be neighbors based only
on the prefix of the normalized query vector. Once the pre-
fix length of the query un-normalized vector falls below the
bound in Equation 8, objects that have not already been en-
countered in the index can no longer be similar enough to
the query.

A tighter bound for the un-normalized candidate vector
length

Let β = ‖dc ‖/‖dq ‖, and, for notation simplicity, s =〈
d̂q, d̂c

〉
= C(di, dj). Given T(dq, dc) ≥ ε , and the pre-

imposed object processing order (i.e., ‖dq ‖ ≥ ‖dc ‖), we
derive β as a function of the cosine similarity of the objects,
starting from Equation 3,

T(dq, dc) =
C(dq, dc)

‖dq ‖2+‖dc ‖2
‖dq ‖ ‖dc ‖ − C(dq, dc)

≥ ε

s‖dq ‖‖dc ‖
‖dq ‖2 + ‖dc ‖2 − s‖dq ‖‖dc ‖

≥ ε

ε ‖dc ‖2 − s(1 + ε)‖dc ‖‖dq ‖ − ε ‖dq ‖2 ≤ 0

ε β2 − s(1 + ε)β − ε ≤ 0

β =
s(1 + ε)

2ε
+

√(
s(1 + ε)

2ε

)2
− 1 =

s
t
+

√(s
t

)2
− 1 (9)

Replacing s with any of the upper bounds on the cosine
similarity we described in Section 3.3, the bound in Equa-
tion 9 allows us to prune any candidate whose length is less
than ‖dq ‖/β. Note that, for s = 1, which is the upper limit
of the cosine similarity of nonnegative real-valued vectors,
β = α, which is the bound introduced by Kryszkiewicz [35]
for length-based pruning of candidate vectors. In the pres-
ence of an upper bound estimate of the cosine similarity for
two vectors, our bound provides a more accurate estimate of
the minimum length a candidate vector must have to poten-
tially be a neighbor for the query.

In Algorithm 3, we present pseudocode for the TAPNN
method, which includes all the pruning strategies we de-
scribed in Section 3. The symbol EQ8 in line 12 refers to
checking the query prefix vector length, according to Equa-
tion 8. While our bound β for the un-normalized candidate

Algorithm 3 The TAPNN algorithm
1: function TAPNN(D, ε)
2: Lines 2 – 10 in Algorithm 2
3: for each q = 1, . . . , |D | s.t. ‖dc ‖ ≤ ‖dq ‖ ∀c ≤ q do
4: Find label dmax of last object that can be ignored
5: for each j = m, . . . , 1 s.t. d̂q, j > 0 do . CG
6: for each k = S[j], . . . , |Ij | do
7: (dc, dc, j) ← Ij [k]
8: if dc ≤ dmax then
9: S[j] ← S[j] + 1

10: else if dc ≥ dq then
11: break
12: else if A[dc] > 0 or [ps≤ jq ≥ t and EQ8] then
13: A[dc] ← A[dc] + d̂q, j × d̂c, j

14: Prune if A[dc] + ‖d̂< j
q ‖ ‖d̂< j

c ‖ < t

15: for each dc s.t. A[dc] > 0 do . CV
16: Prune if A[dc] + ps<c < t
17: Compute β given s = A[dc] + ps<c
18: Prune if ‖dc ‖ × β < ‖dq ‖
19: Find first j s.t. d̂≤c, j > 0 and dq, j > 0
20: A[dc] ← A[dc] + d̂q, j × d̂c, j

21: Prune if A[dc] + ‖d̂< j
q ‖ ‖d̂< j

c ‖ < t

22: Compute β given s = A[dc] + ‖d̂< j
q ‖ ‖d̂< j

c ‖
23: Prune if ‖dc ‖ × β < ‖dq ‖
24: for each j = . . . , 1 s.t. d̂≤c, j > 0 and dq, j > 0 do
25: A[dc] ← A[dc] + d̂q, j × d̂c, j

26: Prune if A[dc] + ‖d̂< j
q ‖ ‖d̂< j

c ‖ < t

27: Scale dot-product in A[dc] according to Equation 3
28: if A[dc] ≥ ε then
29: N ← N ∪ (dq, dc, A[dc])
30: return N

vector length could be checked each time we have a bet-
ter estimate of the cosine similarity of two vectors, after
each accumulation operation, it is more expensive to com-
pute than the simpler prefix `2-norm cosine bound. We thus
check it only twice for each candidate object, first after com-
puting the cosine estimate based on the candidate ps bound
(line 17) and again after accumulating the first un-indexed
feature in the candidate (line 22). We have found this strat-
egy works well in practice.

4 Materials

In this section, we describe the datasets, baseline algorithms,
and performance measures used in our experiments.

4.1 Datasets

We evaluate each method using several real-world and
benchmark text and chemical compound corpora. Their
characteristics, including number of rows (n), columns (m),
nonzeros (nnz), and mean row/column length (µr /µc), are
detailed in Table 2.

Efficient Identification of Tanimoto Nearest Neighbors 9

1. Patents-8.8M is a random subset of 8.8M patent doc-
uments from all US utility patents.1 Each document
contains the patent title, abstract, and body. Patents-
4M, Patents-2M, Patents-1M, Patents-500K, Patents-
250K and Patents-100K are random subsets of 4E+6,
2E+6, 1E+6, 5E+5, 2.5E+5, and 1E+5 patents, respec-
tively, from the Patents-8.8M dataset. Most of our ex-
periments used the Patents-100K dataset, which we had
readily available. We later processed the larger Patents
datasets and included them in our scaling experiments.

2. RCV1 is a standard text processing benchmark corpus
containing over 800,000 newswire stories from Reuters,
Ltd [38].

3. MLSMR [39] (Molecular Libraries Small Molecule
Repository) is a collection of structures of compounds
accepted into the repository of PubChem, a database of
small organic molecules and their biological activity cu-
rated by the National Center for Biotechnology Informa-
tion (NCBI). We used the December 2008 version of the
Structure Data Format (SDF) database.2

4. SC-11.5M contains compounds from the SureChEMBL [40]
database, which includes a large set of chemical com-
pounds automatically extracted from text, images, and
attachments of patent documents. SC-5M, SC-1M, SC-
500K and SC-100K are random subsets of 5E+6, 1E+6,
5E+5 and 1E+5 compounds, respectively, from the SC-
11.5M dataset.

Table 2 Dataset Statistics

dataset n m nnz µr µc
RCV1 804K 46K 61.5M 77 1,348

Patents-8.8M 8,820K 16,591K 4,277.1M 485 258
Patents-4M 4,000K 8,187K 1,791.0M 448 219
Patents-2M 2,000K 4,146K 837.4M 419 202
Patents-1M 1,000K 3,215K 464.5M 465 145

Patents-500K 500K 2,156K 233.0M 466 108
Patents-250K 250K 1,403K 116.1M 464 83
Patents-100K 100K 759K 46.3M 464 61

MLSMR 325K 20K 56.1M 173 2,803
SC-11.5M 11,519K 7,415 1,784.5M 155 262,669

SC-5M 5,000K 7,415 699.9M 155 103,063
SC-1M 1,000K 6,752 154.9M 155 22,949

SC-500K 500K 6,717 77.5M 155 11,533
SC-100K 100K 6,623 15.5M 155 2,336

In the table, n represents the number of objects (rows), m is the number
of features in the vector representation of the objects (columns), nnz is
the number of nonzero values, and µr and µc are the mean number of
nonzeros in each row and column, respectively. The dashed line delin-
eates text datasets (top) from chemical compound datasets (bottom).

4.1.1 Text data processing

We used standard text processing methods to encode docu-
ments as sparse vectors. Each document was first tokenized,

1 http://www.uspto.gov/
2 https://mlsmr.evotec.com/MLSMR_HomePage/pdf/MLSMR_

Collection_20081201.zip

removing punctuation, making text lowercased, and split-
ting the document into a set of words. Each word was then
stemmed using the Porter stemmer [41], reducing different
versions of the same word to a common token. Within the
space of all tokens, a document is then represented by the
sparse vector containing the frequency of each token present
in the document.

4.1.2 Chemical compound processing

We encode each chemical compound as a sparse frequency
vector of the molecular fragments it contains, represented by
GF [42] descriptors extracted using the AFGen v. 2.0 [43]
program.3 AFGen represents molecules as graphs, with ver-
tices corresponding to atoms and edges to bonds in the
molecule. GF descriptors are the complete set of unique
size-bounded subgraphs present in each compound. Within
the space of all GF descriptors for a compound dataset, a
compound is then represented by the sparse vector contain-
ing the frequency of each GF descriptor present in the com-
pound. We used a minimum length of 3 and a maximum
length of 5 and ignored hydrogen atoms when generating GF
descriptors (AFGen settings fragtype=GF, lmin=3, lmax=5,
fmin=1, noh: yes). Before running AFGen on each chemi-
cal dataset, we used the Open Babel toolbox [44] to remove
compounds with incomplete descriptions.

4.2 Baseline approaches

We compare our methods against the following baselines.

– IdxJoin [33] is a straight-forward baseline that does
not use any pruning when computing similarities.
IdxJoin uses an accumulator data structure to simulta-
neously compute the dot-products of a query object with
all prior processed objects, iterating through the inverted
lists corresponding to features in the query. While in [33]
the method was used to compute dot-products of normal-
ized vectors, we apply the method on the un-normalized
vectors. Resulting Tanimoto similarities are computed
according to Equation 1, using previously stored vector
norms. Then, those similarities below ε are removed.

– L2AP [33] solves the all-pairs problem for the co-
sine similarity, rather than the Tanimoto coefficient. As
shown in Section 3.3, the Tanimoto all-pairs result is
a subset of the cosine all-pairs result. After executing
the L2AP algorithm, we use Equation 3 and previously
stored vector norms to compute the Tanimoto coefficient
of all resulting object pairs and filter out those below ε .

– MMJoin [34] is a filtering-based approach to solving
the all-pairs problem for the Tanimoto coefficient. It re-
lies on efficiently solving the cosine similarity all-pairs

3 http://glaros.dtc.umn.edu/gkhome/afgen/download

10 David C. Anastasiu, George Karypis

problem using pruning bounds based on vector lengths
and the number of nonzero features in each vector.

– MK-Join is a method we designed using the Tanimoto
similarity pruning bounds described by Kryszkiewicz
in [35] and [36]. MK-Join uses an accumulator to
compute similarities of each query against all candi-
dates found in the inverted lists associated with features
present in the query. However, MK-Join processes in-
verted lists in a different order, in non-increasing or-
der of the query feature values. By following this order,
Kryszkiewicz has shown that the method can safely stop
accepting new candidates once the squared norm of the
partially processed query vector (i.e., setting values of
unprocessed features to 0) falls below t = 1 − (2ε

1+ε)2. A
candidate is also ignored if its length ‖dc ‖ falls outside
the range [(1/α)‖dq ‖, α‖dq ‖], where α is defined as in
Equation 2.

– We also implemented MK-Join2, a version of MK-Join
that further incorporates a tighter bound on candi-
date lengths described by Kryszkiewicz in Theorem 5
of [37]. The bound is equivalent to our Equation 8

with s =
√

1 −∑
i∈L d̂q,i , given the set L of query

features that are not also candidate features. However,
finding this set requires traversing both the query and
candidate sparse vectors, which reduces the benefit ob-
tained by pruning candidates. As an example, Table 3
shows the results of executing MK-Join and MK-Join2
for ε ∈ {0.6, 0.7, 0.8, 0.9, 0.99} on the MLSMR and
RCV1 datasets. The execution environment details for
this experiment are provided in Section 4.4. While exe-
cuting as little as 1/5 of the dot-product computations
that MK-Join executes, MK-Join2 was slower than
MK-Join in our experiments. As a result, in order to
reduce clutter in our figures, we only include the results
for MK-Join in Section 5.

Table 3 Comparison of MK-Join and MK-Join2

MLSMR RCV1
ε dps time ε dps time
0.6 0.9019 1.0169 0.6 0.6088 1.0044
0.7 0.8348 1.0350 0.7 0.5890 1.0161
0.8 0.7303 1.0339 0.8 0.5942 1.0141
0.9 0.5681 1.0329 0.9 0.6202 1.0054
0.99 0.2275 1.0027 0.99 0.5115 1.0067

The table shows the ratio of the number of dot-products computed by
MK-Join2 and MK-Join (dps column), and the ratio of the time
taken by MK-Join2 and that of MK-Join (time column) for two
datasets and five different ε values.

4.3 Performance measures

We compare the search performance of different methods in
terms of CPU runtime, which is measured in seconds. I/O
time needed to load the dataset into memory or write output

to the file system should be the same for all methods and is
ignored. Between a method A and a baseline B, we report
speedup as the ratio of B’s execution time and that of A’s.

We use the number of candidates and the number of
full similarity computations as an architecture- and pro-
gramming language-independent way to measure similarity
search cost [33, 45, 46]. A naïve method may compute up to
n(n − 1) = O(n2) similarities to solve the APSS problem.
However, all of our comparison methods take advantage of
the commutative property of the Tanimoto similarity and at
most compare n(n−1)

2 candidate object pairs and compute as
many similarities. We thus report the percent of compared
candidates (candidate rate) and computed full dot-products
(scan rate) as opposed to this upper limit.

4.4 Execution environment

Our method4 and all baselines are single-threaded, serial
programs, implemented in C, and compiled using gcc 5.1.0
with the -O3 optimization setting enabled. Each method was
executed on its own node in a cluster of HP Linux servers.
Each server is a dual-socket machine, equipped with 24 GB
RAM and two four-core 2.6 GHz Intel Xeon 5560 (Nehalem
EP) processors with 8 MB Cache. We executed each method
a minimum of three times for ε ∈ {0.6, 0.7, 0.8, 0.9, 0.99}
and report the best execution time in each case. Process-
ing the full SC-11.5M (1.78B nonzeros, 14 GB on disk) and
Patents-8.8M (4.28B nonzeros, 28 GB on disk) datasets re-
quires more than the available RAM on the Nehalem ma-
chines; thus we executed data scaling experiments on a dif-
ferent server, equipped with 64 GB RAM and two 12-core
2.5 Ghz Intel Xeon (Haswell E5-2680v3) processors with
30 MB Cache. All datasets except the full Patents-8.8M
dataset could be processed using 64 GB RAM. The Patents
dataset experiments were executed on a high-memory ma-
chine with the same Haswell processors and 256 GB RAM.
As all tested methods are serial, only one core was used on
each server during the execution.

5 Results & Discussion

Our experiment results are organized along several direc-
tions. First, we analyze statistics of the input data and out-
put neighborhood graphs for some of the datasets we use in
our experiments, and the effectiveness of our new Tanimoto
bounds at pruning the similarity search space. Then, we
compare the efficiency of our method against existing state-
of-the-art baselines, demonstrating up to an order of magni-
tude improvement. Finally, we analyze the scaling character-

4 Source code available at http://davidanastasiu.net/software/tapnn/

Efficient Identification of Tanimoto Nearest Neighbors 11

istics of our method when dealing with increasing amounts
of data.

5.1 Neighborhood graph statistics

The efficiency of similarity search methods for input ob-
jects represented as a sparse matrix is highly dependent on
the characteristics of those data. Consider, for example, a
banded sparse matrix of width k. Each object would have
to be compared against at most 2k other objects. On the
other hand, almost all pairwise similarities must be com-
puted if the nonzeros are randomly distributed in the ma-
trix. In many real-world datasets, the object frequency of
features (the number of objects that have a nonzero value
for a feature) displays a power-law distribution, with a small
number of features present in many objects and the majority
of features present in few objects. Thus, even though these
datasets are sparse, the features at the head of the distribu-
tion will cause most objects to be compared against most
other objects when computing pairwise similarities.

0 20 40 60 80 100
percent

100

101

102

103

104

105

106

o
b

je
c
t

fr
e
q

u
e
n

c
y
,

lo
g

-s
c
a
le

d

Patents-100K

SC-100K

RCV1

SC-500K

MLSMR

SC-1M

Fig. 5 Object frequency distributions for dataset features.

Our chosen datasets have diverse object frequency dis-
tributions. Figure 5 shows these distributions for six of the
datasets in Table 2. Note that the frequency counts are log-
scaled to better distinguish differences between the distribu-
tions. The graph shows that more than 60% of the 759,044
features in the Patents-100K dataset can only be found in
one object, yet the top 1% of features can each be found in
at least 490 objects. Similarly, almost 15% of the 20,021 fea-
tures in the MLSMR dataset are only present in one object,
but 200 features are present in at least 63,646 of the 325,164
objects in the dataset. In the RCV1 and SC datasets, all fea-
tures are present in at least 10 objects.

While sparsity and feature distributions play a big role
in the number of objects that must be compared to solve
the APSS problem exactly, the number of computed sim-
ilarities is also highly dependent on the threshold ε . We
studied properties of the output graph to understand how
the input threshold can affect the efficiency of search al-
gorithms. Each nonzero value in the adjacency matrix of
the neighborhood graph represents a pair of objects whose
similarity must be computed and cannot be pruned. A fairly

Table 4 Neighborhood graph statistics

ε µ ρ µ ρ
Patents-100K RCV1

0.1 3,412 3.412e-02 21,655 2.692e-02
0.2 445 4.452e-03 2,707 3.366e-03
0.3 82 8.208e-04 881 1.095e-03
0.4 15 1.535e-04 417 5.196e-04
0.5 2.6 2.615e-05 199 2.484e-04
0.6 0.47 4.716e-06 85 1.062e-04
0.7 0.15 1.513e-06 34 4.300e-05
0.8 0.09 8.660e-07 12 1.616e-05
0.9 0.06 6.006e-07 5.2 6.428e-06
0.99 0.04 3.818e-07 1.2 1.433e-06

MLSMR SC-100K
0.1 281,509 8.657e-01 67,121 6.712e-01
0.2 212,894 6.547e-01 45,229 4.523e-01
0.3 126,620 3.894e-01 26,198 2.620e-01
0.4 61,067 1.878e-01 12,950 1.295e-01
0.5 23,482 7.222e-02 5,300 5.300e-02
0.6 6,569 2.020e-02 1,688 1.688e-02
0.7 1,184 3.644e-03 397 3.976e-03
0.8 127 3.924e-04 72 7.270e-04
0.9 10 3.358e-05 11 1.128e-04
0.99 0.28 8.495e-07 0.09 8.900e-07

SC-500K SC-1M
0.1 336,815 6.736e-01 673,156 6.732e-01
0.2 226,917 4.538e-01 453,149 4.531e-01
0.3 131,385 2.628e-01 262,292 2.623e-01
0.4 64,982 1.300e-01 129,752 1.298e-01
0.5 26,590 5.318e-02 53,152 5.315e-02
0.6 8,442 1.688e-02 16,914 1.691e-02
0.7 1,963 3.927e-03 3,953 3.953e-03
0.8 349 6.996e-04 710 7.104e-04
0.9 54 1.085e-04 110 1.109e-04
0.99 0.47 9.351e-07 0.95 9.453e-07

The table shows the average neighborhood size (µ) and neighborhood
graph density (ρ) for six of the test datasets and ε ranging from 0.1 to
0.99.

dense neighborhood graph adjacency matrix means any ex-
act APSS algorithm will take a long time to solve the prob-
lem, no matter how effectively it can prune the search space.
Table 4 shows the average neighborhood size (µ) and neigh-
borhood graph density (ρ) for six of the test datasets and
ε ranging from 0.1 to 0.99. Graph density is defined here
as the ratio between the number of edges (object pairs with
similarity at least ε) and n(n − 1), which is the number of
edges in a complete graph with n vertices. As expected, the
similarity graph is extremely sparse for high values of ε ,
with less than one neighbor on average in all but one of the
datasets at ε = 0.99. However, the average number of neigh-
bors and graph density increase disproportionally for the dif-
ferent datasets as ε increases. The Patents-100K dataset has
less than 100 neighbors on average for each of the objects
even at ε = 0.3, while the chemical datasets have hundreds
of neighbors on average even at ε = 0.8. The density of the
similarity graphs for the chemical datasets increases rapidly
as ε decreases. For ε = 0.1, these graphs contain more than
67% of the edges in the complete graph.

12 David C. Anastasiu, George Karypis

0 20 40 60 80 100
100

101

102

103

104

105

Patents-100K

0 20 40 60 80 100
100

101

102

103

104

105

106
RCV1

0 20 40 60 80 100
100

101

102

103

104

105

MLSMR

0 20 40 60 80 100
100

101

102

103

104

105

SC-100K

0 20 40 60 80 100
100

101

102

103

104

105

106 SC-500K

0.1 0.3 0.5 0.7 0.9 max

0 20 40 60 80 100
100

101

102

103

104

105

106
SC-1M

#
 n

e
ig

h
b

o
rs

,
lo

g
-s

c
a
le

d

Fig. 6 Neighbor count distributions for several values of ε .

To put things in perspective, the 673.16 billion edges of
the SC-1M neighborhood graph for ε = 0.1 take up 16.7
Tb of hard drive space, and more than half of those rep-
resent similarities below 0.5, which are somewhat distant
neighbors. Nearest neighbor-based classification or recom-
mender systems methods often rely on a small number (gen-
erally less than 100) of each object’s nearest neighbors to
complete their task. This analysis suggests that different ε
thresholds may be appropriate for the analysis of different
datasets. Searching the Patents-100K dataset using ε = 0.3,
the RCV1 dataset using ε = 0.6, the MLSMR dataset using
ε = 0.8, and the SC-1M dataset using ε = 0.9 would pro-
vide enough nearest neighbors on average to complete the
required tasks.

Figure 6 gives a more detailed picture of the distribution
of neighborhood sizes for the similarity graphs in Table 4
and a subset of the ε thresholds. The max line shows the
number of neighbors that would be present in the complete
graph. The purple line for ε = 0.9 is not visible in the figure
for the Patents-100K dataset, due to the extreme sparsity of
that graph. The vertical difference between each point on a
distribution line and the max line represents the potential for
savings in filtering methods, i.e., the number of objects that
could be pruned without computing their similarity in full.
As the figure shows, the potential for savings is less than
half on chemical datasets for ε = 0.5 and shrinks to almost
nothing at ε = 0.1. On the other hand, text datasets show a
much higher potential for savings, even at low ε thresholds.

5.2 Pruning effectiveness

We now study the effectiveness of our method, along several
directions. First, we analyze the performance of our method
with regard to the number of ignored or pruned object pairs
in different stages of the similarity search and the effective-
ness of the partial indexing strategy described in Section 3.3.
Then, we compare the amount of pruning in our method to
that in other state-of-the-art filtering methods. Finally, we
consider the effect of our Tanimoto-specific pruning on the
efficiency on our method.

5.2.1 Effectiveness of pruning the search space

As described in Section 3 and shown in Figure 2, our method
works by taking advantage of sparsity in the input data, the
length of the input vectors, and even the angle between vec-
tors to prune the search space. In order to measure the effec-
tiveness of our method, we instrumented our code to count
the number of object pairs that were pruned as a result of
each of these strategies. We first show the pruning effected
by TAPNN prior to generating candidates, by taking advan-
tage of sparsity, vector lengths, and partial indexing based
on vector angles. Note that TAPNN does not compute any
part of the similarity for these pruned object pairs.

Table 5 shows the cumulative percent of the pairwise
similarity search space pruned by these strategies for six of
the test datasets and ε ranging from 0.1 to 0.99. Percent val-
ues are computed with respect to the number of object sim-
ilarities considered by a naïve algorithm while taking ad-
vantage of the commutative property of Tanimoto similar-
ity, i.e., n(n−1)

2 . As the results show, TAPNN is very effective

Efficient Identification of Tanimoto Nearest Neighbors 13

Table 5 Search space pruning in TAPNN prior to candidate generation

ε sparsity length angle idx sparsity length angle idx sparsity length angle idx
Patents-100K RCV1 MLSMR

0.1 0.00 1.69 1.792 93.47 10.49 10.65 22.808 97.00 0.16 0.18 0.707 99.59
0.2 0.00 7.28 7.763 82.25 10.49 11.39 34.061 90.61 0.16 0.39 1.885 98.26
0.3 0.00 14.67 16.353 71.42 10.49 13.10 46.510 81.69 0.16 0.92 3.931 96.26
0.4 0.00 22.08 27.328 62.11 10.49 14.82 61.385 71.11 0.16 1.88 8.421 92.10
0.5 0.00 28.09 40.411 53.59 10.49 15.50 75.678 59.79 0.16 3.55 16.504 85.24
0.6 0.00 31.52 54.684 45.47 10.49 14.99 86.699 48.17 0.16 6.12 28.782 75.50
0.7 0.00 31.39 69.110 37.50 10.49 13.71 93.974 36.73 0.16 8.86 45.490 62.92
0.8 0.00 27.16 82.428 29.54 10.49 12.25 97.922 25.84 0.16 10.44 65.557 47.41
0.9 0.00 17.22 93.655 20.48 10.49 11.07 99.608 15.12 0.16 8.53 87.216 28.04
0.99 0.00 2.05 99.815 7.51 10.49 10.51 99.995 3.49 0.16 1.10 99.749 4.27

SC-100K SC-500K SC-1M
0.1 1.53 2.44 3.996 99.32 1.44 2.32 3.860 99.32 1.45 2.33 3.872 99.32
0.2 1.53 5.43 8.208 97.74 1.44 5.23 8.025 97.74 1.45 5.26 8.056 97.73
0.3 1.53 9.47 13.935 95.69 1.44 9.22 13.701 95.70 1.45 9.26 13.742 95.69
0.4 1.53 13.84 21.251 92.43 1.44 13.61 21.023 92.45 1.45 13.65 21.062 92.44
0.5 1.53 18.38 30.443 87.52 1.44 18.18 30.200 87.56 1.45 18.23 30.237 87.55
0.6 1.53 22.51 41.667 80.48 1.44 22.35 41.437 80.52 1.45 22.40 41.478 80.51
0.7 1.53 25.11 55.183 70.36 1.44 25.00 55.006 70.42 1.45 25.03 55.050 70.40
0.8 1.53 24.75 71.018 56.00 1.44 24.73 70.878 56.08 1.45 24.74 70.905 56.08
0.9 1.53 18.52 88.246 35.75 1.44 18.46 88.190 35.78 1.45 18.47 88.193 35.78
0.99 1.53 3.47 99.734 6.60 1.44 3.38 99.734 6.59 1.45 3.39 99.733 6.60

The table shows, in the sparsity, length, and angle columns, respectively, the cumulative percent of the pairwise similarity search space pruned by
taking advantage of sparsity, vector lengths, and partial indexing based on vector angles for six of the test datasets and ε ranging from 0.1 to 0.99.
The idx column shows the percent of the input dataset nonzeros that are indexed by our method.

at high similarity thresholds, pruning up to 99.995% of the
search space in the case of the RCV1 dataset and ε = 0.99.
However, for small ε values, when the output graph is no
longer sparse (see Table 4), the amount of pruning effected
by TAPNN prior to generating candidates dwindles. Angle-
and length-based pruning are most effective in our method,
accounting for 90–100% of the pruning effectiveness across
datasets and thresholds. While our datasets are very sparse
(their nonzero densities range between 6.10E-4 and 2.34E-
2), the distributions of the features in the data cause the
majority of objects to be potential neighbors. However, the
length- and angle-based pruning in TAPNN effectively re-
duces the number of object pairs that must be compared to
solve the problem.

The idx column in Table 5 shows the percent of the input
dataset nonzeros that are indexed by our method. Indexing
fewer nonzeros increases the efficiency in our method by
allowing it to traverse shorter inverted index lists during the
candidate generation stage, and it leads to more pruning. We
see this correlation by comparing the idx column with the
percent of the pruning effected by the partial indexing (the
angle column minus the sparsity and length columns) in the
table. The comparison reveals a Pearson correlation ranging
from 0.9314 for the Patents-100K dataset and 0.9993 for the
SC datasets. At high values of ε , our method indexes few
features, which in turn leads to many potential candidates
being implicitly ignored because they have no features in
common with the indexed part of the query vector. On the
other hand, at low similarity thresholds, the majority of the

input nonzeros are indexed, leading to fewer objects being
pruned.

While TAPNN prunes some of the search space before
candidate generation, it also continues the pruning process
once an object becomes a candidate. Table 6 compares the
the percent of pairwise object pairs that become candidates
in our method (candidate rate–cand column) versus those
whose similarity is fully computed by our method (scan
rate–dps column) and those who are actually neighbors (nbr
column), given ε ranging from 0.1 to 0.99 and six different
datasets. The cand column represents the un-pruned object
pairs whose similarities we actually start computing, and
is equivalent to 100% minus the angle column in Table 5.
Our method actually computes the similarity in full for a
much smaller number of object pairs, shown in the dps col-
umn. It is also interesting to note that the percent of object
pairs whose similarity we compute in full is actually very
close to the number of true neighbors, irrespective of simi-
larity threshold, highlighting the effectiveness of our filter-
ing framework.

During the similarity search, after an object becomes a
candidate for some query object, it can be pruned if its sim-
ilarity estimate with the query falls below the threshold ε

based on several theoretic upper bounds described in Sec-
tion 3. Figure 7 shows the percent of candidates pruned by
the different bounds, in addition to those candidates whose
similarity is computed in full (dpscore). Objects can be
pruned as soon as they become candidates, in the candi-
date generation stage, by our `2-norm based pruning bound

14 David C. Anastasiu, George Karypis

Table 6 Pruning performance during filtering in TAPNN

ε cand dps nbr cand dps nbr cand dps nbr
Patents-100K RCV1 MLSMR

0.1 98.208 3.75195 3.41222 77.192 5.12196 2.69207 99.293 86.98722 86.57500
0.2 92.237 0.57141 0.44519 65.939 0.89402 0.33658 98.115 65.97607 65.47327
0.3 83.647 0.12117 0.08208 53.490 0.32050 0.10953 96.069 39.52094 38.94078
0.4 72.672 0.02500 0.01535 38.615 0.14907 0.05196 91.579 19.54342 18.78069
0.5 59.589 0.00449 0.00261 24.322 0.07025 0.02484 83.496 7.80633 7.22169
0.6 45.316 0.00076 0.00047 13.301 0.03078 0.01062 71.218 2.34046 2.02025
0.7 30.890 0.00020 0.00015 6.026 0.01216 0.00430 54.510 0.46706 0.36440
0.8 17.572 0.00010 0.00009 2.078 0.00416 0.00162 34.443 0.05425 0.03924
0.9 6.345 0.00006 0.00006 0.392 0.00117 0.00064 12.784 0.00416 0.00336
0.99 0.185 0.00004 0.00004 0.005 0.00018 0.00014 0.251 0.00009 0.00008

SC-100K SC-500K SC-1M
0.1 96.004 68.00492 67.12217 96.140 68.24212 67.36314 96.128 68.19030 67.30840
0.2 91.792 46.28032 45.23038 91.975 46.44308 45.38356 91.944 46.37475 45.31497
0.3 86.065 27.20557 26.19898 86.299 27.29515 26.27724 86.258 27.24872 26.22932
0.4 78.749 13.88424 12.95055 78.977 13.93386 12.99662 78.938 13.91150 12.97526
0.5 69.557 5.94892 5.30025 69.800 5.96769 5.31808 69.763 5.96442 5.31528
0.6 58.333 2.01654 1.68805 58.563 2.01728 1.68846 58.522 2.01987 1.69147
0.7 44.817 0.50744 0.39764 44.994 0.50206 0.39275 44.950 0.50491 0.39532
0.8 28.982 0.09779 0.07270 29.122 0.09415 0.06996 29.095 0.09545 0.07104
0.9 11.754 0.01589 0.01128 11.810 0.01515 0.01085 11.807 0.01547 0.01109
0.99 0.266 0.00014 0.00009 0.266 0.00015 0.00009 0.267 0.00015 0.00009

The table shows the percent of pairwise object comparisons considered by our algorithm (cand column), the percent of pairwise object pairs
whose similarity is fully computed by our method (dps column), and the percent of pairwise object pairs that are actually neighbors (nbr column),
given ε ranging from 0.1 to 0.99 and six different datasets.

0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
0.
99

0

20

40

60

80

100
Patents-100K

0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
0.
99

0

20

40

60

80

100
RCV1

0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
0.
99

0

20

40

60

80

100
MLSMR

0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
0.
99

0

20

40

60

80

100
SC-100K

0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
0.
99

0

20

40

60

80

100
SC-500K

0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
0.
7
0.
8
0.
9
0.
99

0

20

40

60

80

100
SC-1M

l2cg ps vla l2cv dps

p
e
rc

e
n

t
c
a
n

d
id

a
te

s

Fig. 7 Percentage candidates pruned by different bounds in TAPNN.
(Best viewed in color.)

(l2cg), or as soon as candidate verification starts, through
our ps bound. Additional pruning is effected through our
tighter bound for the un-normalized candidate vector length
β, which here we call the vector length angle bound (vla),
and our `2-norm based pruning during candidate verifica-
tion (l2cv). The results show that the majority of the prun-
ing is done early on, during the candidate generation stage.
For text datasets, pruning overshadows the percent of ob-
jects whose similarity is computed, and those portions of the
bars are not even visible for most ε values. Moreover, the
Tanimoto-specific candidate pruning (vla) makes up a sig-
nificant portion of the overall pruning, especially for chem-
ical datasets.

5.2.2 Effectiveness comparison with filtering baselines

Many of the baseline methods we are comparing against in
this paper are also filtering methods. As an architecture- and
programming-language independent way to compare the ef-
fectiveness of our method against the baselines, we show the
candidate rate (cand column) and scan rate (dps column) for
all filtering methods under comparison in Table 7, for four of
the datasets and ε ranging from 0.3 to 0.9. Bold values rep-
resent the smallest candidate and scan rates across methods
for each similarity threshold.

The results show that TAPNN is most effective among
the compared methods at pruning the search space, which
results in the fewest similarity values computed in full.
L2AP has the closest scan rates to our method for text-based

Efficient Identification of Tanimoto Nearest Neighbors 15

Table 7 Comparison of candidate and scan rates for filtering-based methods

TAPNN L2AP MMJoin MK-Join
ε cand dps cand dps cand dps cand dps

Patents-100K
0.30 83.65 0.1212 99.87 1.3527 100.00 8.5759 90.20 76.8965
0.40 72.67 0.0250 99.38 0.4173 99.67 2.0669 79.26 60.9828
0.50 59.59 0.0045 97.59 0.1187 95.98 0.4888 67.90 46.2979
0.60 45.32 0.0010 93.10 0.0267 88.48 0.1460 57.65 34.0969
0.70 30.89 0.0002 83.93 0.0040 77.31 0.0306 48.86 24.2447
0.80 17.57 0.0001 67.56 0.0004 60.48 0.0049 41.42 16.2758
0.90 6.34 0.0001 41.18 0.0001 33.78 0.0005 37.17 10.0336

RCV1
0.30 53.49 0.3205 73.62 0.8375 73.09 15.1487 66.45 63.3365
0.40 38.61 0.1491 64.23 0.2835 67.11 10.5094 54.47 48.8616
0.50 24.32 0.0703 52.46 0.1244 52.37 6.0532 43.81 35.9840
0.60 13.30 0.0314 38.80 0.0611 34.93 2.6000 34.52 25.1845
0.70 6.03 0.0124 24.57 0.0265 18.99 0.7648 26.92 16.7887
0.80 2.08 0.0042 11.74 0.0086 8.07 0.1929 20.86 10.4767
0.90 0.39 0.0012 3.15 0.0017 1.95 0.0307 16.43 5.7592

MLSMR
0.30 96.07 39.5209 98.87 77.0628 98.74 82.1759 98.89 98.0920
0.40 91.58 19.5434 97.89 59.7118 98.11 74.5478 98.36 96.4064
0.50 83.50 7.8063 95.97 39.0700 97.11 65.0857 97.59 93.4267
0.60 71.22 3.1128 91.67 19.9784 93.43 47.2142 96.74 88.5399
0.70 54.51 0.6213 83.62 6.9207 82.13 22.6891 95.65 80.8921
0.80 34.44 0.0671 68.34 1.1792 62.17 6.1240 94.01 69.2132
0.90 12.78 0.0044 40.82 0.0462 32.23 0.5651 92.06 51.0706

SC-1M
0.30 86.26 27.2487 96.11 62.3976 95.73 73.8524 94.27 86.5448
0.40 78.94 13.9115 94.83 47.6004 94.72 68.0235 92.43 80.0253
0.50 69.76 5.9644 92.86 31.8095 93.51 60.1836 90.39 72.6842
0.60 58.52 2.0199 89.69 17.7314 90.29 45.9351 88.33 64.5104
0.70 44.95 0.7568 84.00 7.2723 82.17 27.4836 86.13 55.3111
0.80 29.10 0.0954 72.62 1.7795 67.04 11.2794 83.38 44.4693
0.90 11.81 0.0193 48.71 0.2018 40.29 2.3703 80.71 30.9351

The table shows the candidate and scan rates for the filtering-based methods under comparison, as the result of experiments over four datasets and
ε ranging from 0.3 to 0.9. Bold values represent the smallest candidate and scan rates across methods for each similarity threshold.

datasets, but, without Tanimoto-specific pruning, consid-
ers many more candidates in general, especially for chem-
ical datasets. While MMJoin prunes much of the search
space, it lags behind both TAPNN and L2AP. With its vec-
tor length based pruning, MK-Join is able to ignore many
objects without starting to compute their similarity. At high
thresholds, its candidate rate is often lower than both that of
MMJoin and L2AP. However, the method seems ineffective
at pruning candidates, resulting in very high scan rates.

5.2.3 Effectiveness of Tanimoto bounds

As another way to test the pruning effectiveness of the new
Tanimoto length bounds introduced in Section 3.4, we com-
pared execution times of TAPNN with two versions of the
program which did not take advantage of these bounds.
While both programs implement the length-based pruning
described in Section 3.1, TAPNN-c filters cosine neighbors
using the threshold ε , while TAPNN-t employs the tighter
cosine filtering bound from Equation 4. Figure 8 shows the

log-scaled execution times for the three methods, given ε

ranging from 0.3 to 0.99.

100

101

102

103

Patents-100K RCV1
100

101

102

103

104

0.6 0.7 0.8 0.9 0.99

²

101

102

103

104

MLSMR
0.6 0.7 0.8 0.9 0.99

²

SC-1M
102

103

104

105

TAPNN-c

TAPNN-t

TAPNN

ti
m

e
 (

s
),

 l
o
g

-s
c
a
le

d

Fig. 8 Effect of Tanimoto bounds on search efficiency.

16 David C. Anastasiu, George Karypis

100

101

102

103

Patents-100K RCV1
100

101

102

103

104

0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

²

100

101

102

103

104

MLSMR
0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99

²

SC-1M
100

101

102

103

104

105

IdxJoin

MK-Join

MMJoin

L2AP

TAPNN

ti
m

e
 (

s
),

 l
o
g

-s
c
a
le

d

Fig. 9 Efficiency comparison of TAPNN versus baselines.

The results of our experiments indicate that the newly
introduced bounds are effective at improving search per-
formance, achieving up to 5.8x speedup against TAPNN-t
and 13.3x speedup against TAPNN-c. Chemical datasets ex-
hibit higher performance improvement at high thresholds,
but much lower as ε → 0.6.

5.3 Execution efficiency

The main goal of our method is to efficiently solve the
Tanimoto APSS problem. We compared TAPNN against the
baselines described in Section 4.2, for a wide range of ε val-
ues. Figure 9 displays our timing results for each method on
four datasets. In each quadrant, smaller times indicate better
performance. Note that the y-axis has been log-scaled.

The results show that TAPNN significantly outperformed
all baselines, by up to an order of magnitude, for all thresh-
olds ε ≥ 0.6. As discussed in Section 5.1, neighborhood
graphs for lower similarities are likely too dense and pro-
vide less benefit for neighborhood-based analysis. In the
range ε ∈ [0.6, 0.99], speedup of TAPNN versus the next best
method was between 3.0x–8.0x for text datasets and 1.2x–
12.5x for chemical datasets. Speedup against IdxJoin,
which is similar to a linear search and does not employ
any pruning ranged between 8.3x–3981.4x for text data and
1.5x–519x for chemical data, highlighting the pruning per-
formance of our method, especially for high values of ε .

TAPNN performed on par with the IdxJoin baseline
on the two chemical datasets for ε = 0.5, and slightly
worse than the IdxJoin and MK-Join baselines for lower
thresholds. While our method pruned most of the object
pairs in the search space that were not neighbors (see Sec-
tion 5.2), the benefit gained by the pruning did not out-
weigh the cost of checking filtering bounds at small sim-
ilarity thresholds. The IdxJoin and MK-Join baselines

spend no or little time checking filtering bounds, which is
an advantage when the neighborhood graph is fairly dense.

The best performing baseline in general was L2AP,
our previous cosine APSS method, which employs similar
cosine based pruning but does not take advantage of un-
normalized vector lengths in its filtering. L2AP was shown
in [33] to outperform MMJoin for the cosine APSS task.
Our results show that it also outperformed MMJoin for Tan-
imoto APSS, in all experiments. MK-Join was not compet-
itive against L2AP and MMJoin for ε ≥ 0.8 for chemical
datasets and in general for text datasets. In fact, it performed
worse than IdxJoin for the Patents-100K dataset, and only
slightly better in general. The Patents-100K dataset has a
high average vector size (number of nonzeros) and low aver-
age index list size, which may have contributed to the poor
performance of MK-Join. The results show that the strat-
egy of cosine filtering applied to the Tanimoto APSS prob-
lem, which is employed in different ways by TAPNN, L2AP,
and MMJoin, works quite well for both text and chemical
datasets.

5.4 Scaling

As a way for us to understand the scalability of our method,
we measured the execution time when searching for neigh-
bors, given ε between 0.5 and 0.99, on three random sub-
sets from the SC-11.5M dataset (100K, 500K, and 1M
compounds) and four random subsets of the Patents-8.8M
dataset (100K, 250K, 500K, and 1M patents), for TAPNN
and the IdxJoin, MK-Join, and MMJoin baselines. Fig-
ure 10 shows the results of these experiments for the Patents
(left) and SC (right) datasets. In each quadrant of each sub-
figure, we plot the number of nonzeros in the dataset (×108,
x-axis) against the execution time (log-scaled, y-axis).

Overall, the results show that algorithms display simi-
lar scaling trends as dataset sizes are increased. However, as
ε is increased, TAPNN is able to distance itself from base-
lines, increasing the efficiency gap to outperform them by
over an order of magnitude. The SC and Patents datasets
are quite different. By construction, the SC dataset has few
features (less than 7.5K), which means its inverted lists be-
come quite long (up to 262.7K compounds on average for
the full SC-11.5M dataset), and many object pairs are likely
to have at least one feature in common. On the other hand,
patents use quite diverse terminology, which is evident form
the drastic increase in the number of features in the Patents
datasets, from 759.0K to 16.6M between the Patents-100K
and Patents-8.8M datasets. TAPNN is able to get excellent
performance for both types of data by employing effective
pruning strategies. Our analysis in Section 5.1 also showed
that the neighborhood graph for the SC datasets is close to
complete at ε = 0.5 and below, which means there is little

Efficient Identification of Tanimoto Nearest Neighbors 17

100

101

102

103

104

105

ti
m

e
 (

s
),

 l
o
g

-s
c
a
le

d

ε= 0. 5 ε= 0. 6 ε= 0. 7

0 1 2 3 4 5
1e8

100

101

102

103

104

105

ε= 0. 8

0 1 2 3 4 5
non-zeros 1e8

ε= 0. 9

IdxJoin MK-Join MMJoin TAPNN

0 1 2 3 4 5
1e8

ε= 0. 99

Patents

100

101

102

103

104

105

ti
m

e
 (

s
),

 l
o
g

-s
c
a
le

d

ε= 0. 5 ε= 0. 6 ε= 0. 7

0.0 0.5 1.0 1.5
1e8

100

101

102

103

104

105

ε= 0. 8

0.0 0.5 1.0 1.5
non-zeros 1e8

ε= 0. 9

IdxJoin MK-Join MMJoin TAPNN

0.0 0.5 1.0 1.5
1e8

ε= 0. 99

SC

Fig. 10 Scaling characteristics of TAPNN in comparison with baselines at ε thresholds ranging from 0.5 to 0.99 over subsets of the Patents-8.8M
(left) and SC-11.5M (right) datasets.

to be gained by filtering in these scenarios. However, filter-
ing is very effective at high similarity thresholds for these
datasets, producing dramatic speedups over state-of-the-art
baselines.

We also tested TAPNN in a near-duplicate detection sce-
nario on SC subsets ranging from 500K to 11.5M com-
pounds and Patents datasets ranging from 500K to 8.8M
compounds, for ε ∈ {0.95, 0.975, 0.99, 0.999}. Baseline
methods were not able to complete execution for the very
large datasets in a reasonable amount of time (96 h), and we
do not include them in this result. Figure 11 shows execution
times in our experiments for the Patents (left) and SC (right)
datasets. In each each quadrant of each subfigure, we plot
the number of nonzeros in the dataset (×109, x-axis) against
the execution time (log-scaled, y-axis). Each line shows an
execution of our TAPNN algorithm with the labeled ε value.
The name (and size) of the dataset the experiment is exe-
cuted on is also written below the markers of the ε = 0.999
line.

The results of this experiment confirm that our method
continues its nice scaling characteristics even for very large
datasets and the trend is similar as the ε threshold is de-
creased. As the dataset increases in size, there is more op-
portunity for pruning, which allows TAPNN to maintain and
improve its overall performance.

Given increasing dataset sizes, it would be beneficial
to investigate shared memory and distributed extensions of
TAPNN. Existing strategies for parallelizing cosine APSS
filtering strategies [47–49] are likely to provide similar ben-
efits in the Tanimoto APSS context. While the serial version
can find all nearest neighbors for 1M SC compounds with
ε ≥ 0.95 in minutes, a parallel version of the algorithm is
needed to achieve similar performance for lower ε thresh-
olds.

6 Conclusion

We presented TAPNN, a new serial algorithm for solving the
Tanimoto all-pairs similarity search problem for objects rep-
resented as nonnegative real-valued vectors. Unlike many
alternatives, our method solves the problem exactly, find-
ing all pairs of objects with a Tanimoto similarity of at
least some input threshold ε . Our method incorporates sev-
eral filtering strategies based on object vector lengths and
the dot-product of their normalized vectors. We have shown
how these strategies can be effectively used to reduce the
number of object pairs that have to be fully compared, and
have introduced additional filtering techniques that combine
normalized dot-product estimates with un-normalized vec-
tor lengths. We experimentally evaluated our method against
several baselines on both chemical and text datasets and
found TAPNN significantly outperformed them, especially
for high thresholds. In particular, TAPNN was able to find
all near-duplicate pairs among 5M SureChemBL chemical
compounds in minutes, using a single CPU core, was up
to 12.5x more efficient than the most efficient baseline, and
outperformed a linear search baseline by two orders of mag-
nitude in general at ε = 0.99.

7 Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. D. C. Anastasiu and G. Karypis, “Efficient identification of tani-
moto nearest neighbors,” in Proceedings of the 3rd IEEE Interna-
tional Conference on Data Science and Advanced Analytics, ser.
DSAA ’16, 2016.

2. A. Strehl and J. Ghosh, “Relationship-based clustering and visual-
ization for high-dimensional data mining,” INFORMS J. on Com-
puting, vol. 15, no. 2, pp. 208–230, Apr. 2003.

18 David C. Anastasiu, George Karypis

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
non-zeros 1e9

100

101

102

103

104

105

106

ti
m

e
 (

s
),

 l
o
g

-s
c
a
le

d

0.950
0.975
0.990
0.999

P
a
te

n
ts

-5
0
0
K

P
a
te

n
ts

-1
M

P
a
te

n
ts

-2
M

P
a
te

n
ts

-4
M

P
a
te

n
ts

-8
.8

M

0.0 0.5 1.0 1.5
non-zeros 1e9

100

101

102

103

104

105

106

ti
m

e
 (

s
),

 l
o
g

-s
c
a
le

d

0.950
0.975
0.990
0.999

S
C

-5
0

0
K S
C

-1
M

S
C

-5
M S
C

-1
1

.5
M

Fig. 11 Scaling characteristics of TAPNN in a near-duplicate detection scenario over the Patents-8.8M (left) and SC-11.5M (right) datasets.

3. A. S. Joydeep, E. Strehl, J. Ghosh, and R. Mooney, “Impact of
similarity measures on web-page clustering,” in In Workshop on
Artificial Intelligence for Web Search (AAAI 2000. Citeseer, 2000.

4. A. Banerjee and J. Ghosh, “Scalable clustering algorithms with
balancing constraints,” Data Min. Knowl. Discov., vol. 13, no. 3,
pp. 365–395, Nov. 2006.

5. A. Huang, “Similarity measures for text document clustering,”
in Proceedings of the sixth new zealand computer science re-
search student conference, ser. NZCSRSC2008, Christchurch,
New Zealand, 2008, pp. 49–56.

6. C. Lyon, J. Malcolm, and B. Dickerson, “Detecting short passages
of similar text in large document collections,” in Proceedings of
the 2001 Conference on Empirical Methods in Natural Language
Processing, 2001, pp. 118–125.

7. J.-P. Bao and J. Malcolm, “Text similarity in academic conference
papers,” in Procs 2nd International Plagiarism Conference, 2006.

8. S. M. Alzahrani, N. Salim, and A. Abraham, “Understanding pla-
giarism linguistic patterns, textual features, and detection meth-
ods,” Trans. Sys. Man Cyber Part C, vol. 42, no. 2, pp. 133–149,
Mar. 2012.

9. J. R. Curran and M. Moens, “Improvements in automatic the-
saurus extraction,” in Proceedings of the ACL-02 workshop on Un-
supervised lexical acquisition-Volume 9. Association for Com-
putational Linguistics, 2002, pp. 59–66.

10. A. Strehl and J. Ghosh, A Scalable Approach to Balanced, High-
Dimensional Clustering of Market-Baskets. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2000, pp. 525–536.

11. G. Karypis, “Evaluation of item-based top-n recommendation al-
gorithms,” in Proceedings of the Tenth International Conference
on Information and Knowledge Management, ser. CIKM ’01.
New York, NY, USA: ACM, 2001, pp. 247–254.

12. N. R. Adam, V. P. Janeja, and V. Atluri, “Neighborhood based
detection of anomalies in high dimensional spatio-temporal sensor
datasets,” in Proceedings of the 2004 ACM Symposium on Applied
Computing, ser. SAC ’04. New York, NY, USA: ACM, 2004, pp.
576–583.

13. H. Geppert, M. Vogt, and J. Bajorath, “Current trends in ligand-
based virtual screening: Molecular representations, data mining
methods, new application areas, and performance evaluation,”
Journal of Chemical Information and Modeling, vol. 50, no. 2,
pp. 205–216, 2010.

14. M. J. Keiser, B. L. Roth, B. N. Armbruster, P. Ernsberger, and
B. K. Irwin, John J Shoichet, “Relating protein pharmacology by
ligand chemistry,” Nat Biotech, vol. 25, no. 2, pp. 197–206, 2007.

15. F. L. Stahura and J. Bajorath, “Virtual screening methods that
complement hts,” Comb Chem High Throughput Screen, vol. 7,
no. 4, pp. 259–269, 2004.

16. T. G. Kristensen, “Transforming tanimoto queries on real valued
vectors to range queries in euclidian space,” Journal of Mathemat-
ical Chemistry, vol. 48, no. 2, pp. 287–289, 2010.

17. S. M. Arif, J. D. Holliday, and P. Willett, “Inverse frequency
weighting of fragments for similarity-based virtual screening,”
Journal of Chemical Information and Modeling, vol. 50, no. 8,
pp. 1340–1349, 2010.

18. C. D. Manning, P. Raghavan, and H. Schütze, Introduction to In-
formation Retrieval. New York, NY, USA: Cambridge University
Press, 2008.

19. S. J. Swamidass, , and P. Baldi, “Bounds and algorithms for fast
exact searches of chemical fingerprints in linear and sublinear
time,” Journal of Chemical Information and Modeling, vol. 47,
no. 2, pp. 302–317, 2007.

20. R. Nasr, D. S. Hirschberg, and P. Baldi, “Hashing algorithms and
data structures for rapid searches of fingerprint vectors,” Journal
of Chemical Information and Modeling, vol. 50, no. 8, pp. 1358–
1368, 2010.

21. Y. Tabei and K. Tsuda, “Sketchsort: Fast all pairs similarity
search for large databases of molecular fingerprints,” Molecular
Informatics, vol. 30, no. 9, pp. 801–807, 2011. [Online].
Available: http://dx.doi.org/10.1002/minf.201100050

22. T. G. Kristensen, J. Nielsen, and C. N. S. Pedersen, Algo-
rithms in Bioinformatics: 9th International Workshop, WABI
2009, Philadelphia, PA, USA, September 12-13, 2009. Proceed-
ings. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, ch.
A Tree Based Method for the Rapid Screening of Chemical Fin-
gerprints, pp. 194–205.

23. A. Smellie, “Compressed binary bit trees: A new data structure
for accelerating database searching,” Journal of Chemical Infor-
mation and Modeling, vol. 49, no. 2, pp. 257–262, 2009.

24. T. G. Kristensen, J. Nielsen, and C. N. S. Pedersen, “Using in-
verted indices for accelerating lingo calculations,” Journal of
Chemical Information and Modeling, vol. 51, no. 3, pp. 597–600,
2011.

25. P. Thiel, L. Sach-Peltason, C. Ottmann, and O. Kohlbacher,
“Blocked inverted indices for exact clustering of large chemical
spaces,” Journal of Chemical Information and Modeling, vol. 54,
no. 9, pp. 2395–2401, 2014.

26. S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in Proceedings of the 22nd Inter-
national Conference on Data Engineering, ser. ICDE ’06. Wash-
ington, DC, USA: IEEE Computer Society, 2006, pp. 5–.

27. A. Moffat, R. Sacks-davis, R. Wilkinson, and J. Zobel, “Retrieval
of partial documents,” in Information Processing and Manage-
ment, 1994, pp. 181–190.

28. R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs simi-
larity search,” in Proceedings of the 16th International Conference

Efficient Identification of Tanimoto Nearest Neighbors 19

on World Wide Web, ser. WWW ’07. New York, NY, USA: ACM,
2007, pp. 131–140.

29. C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient similarity joins
for near duplicate detection,” in Proceedings of the 17th Interna-
tional Conference on World Wide Web, ser. WWW ’08. New
York, NY, USA: ACM, 2008, pp. 131–140.

30. C. Xiao, W. Wang, X. Lin, and H. Shang, “Top-k set similarity
joins,” in Proceedings of the 2009 IEEE International Conference
on Data Engineering, ser. ICDE ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 916–927.

31. L. A. Ribeiro and T. Härder, “Generalizing prefix filtering to im-
prove set similarity joins,” Inf. Syst., vol. 36, no. 1, pp. 62–78, Mar.
2011.

32. A. Awekar and N. F. Samatova, “Fast matching for all pairs sim-
ilarity search,” in Proceedings of the 2009 IEEE/WIC/ACM In-
ternational Joint Conference on Web Intelligence and Intelligent
Agent Technology - Volume 01, ser. WI-IAT ’09. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 295–300.

33. D. C. Anastasiu and G. Karypis, “L2ap: Fast cosine similarity
search with prefix l-2 norm bounds,” in 30th IEEE International
Conference on Data Engineering, ser. ICDE ’14, 2014.

34. D. Lee, J. Park, J. Shim, and S.-g. Lee, “An efficient similarity
join algorithm with cosine similarity predicate,” in Proceedings of
the 21st International Conference on Database and Expert Sys-
tems Applications: Part II, ser. DEXA’10. Berlin, Heidelberg:
Springer-Verlag, 2010, pp. 422–436.

35. M. Kryszkiewicz, “Bounds on lengths of real valued vectors sim-
ilar with regard to the tanimoto similarity,” in Intelligent Informa-
tion and Database Systems, ser. Lecture Notes in Computer Sci-
ence, A. Selamat, N. Nguyen, and H. Haron, Eds. Springer Berlin
Heidelberg, 2013, vol. 7802, pp. 445–454.

36. ——, “Using non-zero dimensions for the cosine and tanimoto
similarity search among real valued vectors,” Fundamenta Infor-
maticae, vol. 127, no. 1-4, pp. 307–323, 2013.

37. ——, “Using non-zero dimensions and lengths of vectors for the
tanimoto similarity search among real valued vectors,” in Intelli-
gent Information and Database Systems. Springer International
Publishing, 2014, pp. 173–182.

38. D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new bench-
mark collection for text categorization research,” J. Mach. Learn.
Res., vol. 5, pp. 361–397, Dec. 2004.

39. N. Singh, R. Guha, M. A. Giulianotti, C. Pinilla, R. A. Houghten,
and J. L. Medina-Franco, “Chemoinformatic analysis of combi-
natorial libraries, drugs, natural products, and molecular libraries
small molecule repository,” Journal of Chemical Information and
Modeling, vol. 49, no. 4, pp. 1010–1024, 2009.

40. G. Papadatos, M. Davies, N. Dedman, J. Chambers, A. Gaulton,
J. Siddle, R. Koks, S. A. Irvine, J. Pettersson, N. Goncharoff,
A. Hersey, and J. P. Overington, “Surechembl: a large-scale, chem-
ically annotated patent document database,” Nucleic Acids Re-
search, vol. 44, pp. D1220–D1228, 2016.

41. M. F. Porter, “An algorithm for suffix stripping.” Program, vol. 14,
no. 3, pp. 130–137, 1980.

42. N. Wale, I. A. Watson, and G. Karypis, “Indirect similarity based
methods for effective scaffold-hopping in chemical compounds,”
J. Chem. Info. Model, vol. 48, pp. 730–741, 2008.

43. N. Wale and G. Karypis, “Acyclic subgraph based descriptor
spaces for chemical compound retrieval and classification,” in Pro-
ceedings of the Sixth International Conference on Data Mining,
ser. ICDM ’06, 2006.

44. N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vander-
meersch, and G. R. Hutchison, “Open babel: An open chemical
toolbox,” Journal of Cheminformatics, vol. 3, no. 1, pp. 1–14,
2011.

45. W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph
construction for generic similarity measures,” in Proceedings of

the 20th International Conference on World Wide Web, ser. WWW
’11. New York, NY, USA: ACM, 2011, pp. 577–586.

46. Y. Park, S. Park, S.-g. Lee, and W. Jung, “Greedy filtering: A
scalable algorithm for k-nearest neighbor graph construction,” in
Database Systems for Advanced Applications, ser. Lecture Notes
in Computer Science. Springer-Verlag, 2014, vol. 8421, pp. 327–
341.

47. A. Awekar and N. F. Samatova, “Parallel all pairs similarity
search,” in Proceedings of the 10th International Conference on
Information and Knowledge Engineering, ser. IKE ’11, 2011.

48. D. C. Anastasiu and G. Karypis, “Pl2ap: Fast parallel cosine sim-
ilarity search,” in Proceedings of the 5th Workshop on Irregular
Applications: Architectures and Algorithms, in conjunction with
SC’15, ser. IA3 2015. New York, NY, USA: ACM, 2015, pp.
1–8.

49. ——, “Fast parallel cosine k-nearest neighbor graph construc-
tion,” in Proceedings of the 6th Workshop on Irregular Applica-
tions: Architectures and Algorithms, in conjunction with SC’16,
ser. IA3 2016. New York, NY, USA: ACM, 2016.

