
Cosine Approximate Nearest Neighbors

David C. Anastasiu
Department of Computer Engineering

San José State University, San José, CA, USA
Email: david.anastasiu@sjsu.edu

Abstract—Cosine similarity graph construction, or all-pairs
similarity search, is an important kernel in many data mining and
machine learning methods. Building the graph is a difficult task.
Up to n2 pairs of objects should be naı̈vely compared to solve the
problem for a set of n objects. For large object sets, approximate
solutions for this problem have been proposed that address the
complexity of the task by retrieving most, but not necessarily
all, of the nearest neighbors. We propose a novel approximate
graph construction method that leverages properties of the object
vectors to effectively select few comparison candidates, those that
are likely to be neighbors. Furthermore, our method leverages
filtering strategies recently developed for exact methods to
quickly eliminate unpromising comparison candidates, leading to
few overall similarity computations and increased efficiency. We
compare our method against several state-of-the-art approximate
and exact baselines on six real-world datasets. Our results show
that our approach provides a good tradeoff between efficiency
and effectiveness, showing up to 35.81x efficiency improvement
over the best alternative at 0.9 recall.

Index Terms—Cosine, all-pairs similarity search, nearest neigh-
bors, graph construction, similarity graph.

I. INTRODUCTION

Cosine similarity graph construction, or all-pairs similarity
search (APSS), is an important kernel in many data mining
and machine learning methods, including ones for pattern
recognition [1], online advertising [2], query refinement [3],
and collaborative filtering [4]. The goal of APSS is to find, for
each object in a set, which is usually referred to as a query,
all other objects that are sufficiently similar, i.e., those with
similarity of at least some threshold ε . In this work, we focus
on objects that are represented as non-negative sparse vectors,
which applies to many real-world objects. For example, a
social network graph is often represented through its adjacency
matrix, where a row encodes the neighborhood of a user
and non-negative feature weights are assigned to describe the
closeness of the relationship between the user and all other
users in the network. Similarly, a book in a library can be
represented using the bag-of-words model by a vector of word
frequencies.

One way to construct the similarity graph is to compare
each query object against all other objects, which we call
candidates, and filter out those that have similarity below ε .
However, this will require n(n − 1)/2 similarity computations
and does not scale to large sets of objects. Moreover, many of
the candidates will likely be filtered, yet this naı̈ve approach
still computes their similarities to the query. A number of
methods have been developed in the last decade to reduce
the set of candidates. Chaudhuri et al. [5], for example, found

that only some of the leading features in each vector (which
they call the prefix of the vector) had to be considered to
find all potential candidates. In other words, if a candidate
does not have any non-zero value for a feature in the set
of query prefix features, the similarity of that candidate with
the query will necessarily be below ε and the candidate can
be ignored, or pruned. Bayardo et al. [3] used this idea to
develop an exact APSS method, AllPairs, which has since
been extended by several researchers. In a previous work [6],
we gave an overview of these extensions and provided exact
and approximate cosine APSS algorithms, L2AP and L2AP-
Approx, that significantly outperformed previous methods.

A popular approach for approximate nearest neighbor search
has been locality sensitive hashing (LSH). LSH first constructs
a search data structure by using families of locality sensitive
hash functions, which map similar objects to the same bucket
with high probability, to place each object in one or more
buckets. Then, at query time, the objects in the buckets that the
query maps to will be the candidate set that will be compared
with the query. The generic LSH data structures have been
found to perform poorly for the APSS problem (see [3], [6])
when expecting high average recall, due to large candidate sets
that must be compared with the query. However, Satuluri and
Parthasarathy [7] developed a principled Bayesian algorithm
(BayesLSH) that uses LSH based estimates to prune away a
large majority of the false positive candidates.

Solving a related problem, the k-nearest neighbor graph
(kNNG) construction problem, where we are interested in
the k objects with the highest similarity to each query, Park
et al. [8] discovered that objects with shared high weight
features are more likely to be neighbors. Additionally, Dong
et al. [9] showed that additional neighbors may be found
by considering a neighbor’s neighbors as candidates. We
combined these ideas [10] to design an approximate kNNG
construction method which was used as the first step in an
exact kNNG solution. The neighbor similarity concept was
also independently used by Malkov et al. [11] to develop a
greedy approximate kNNG construction algorithm that works
by traversing a small-world neighborhood graph from a ran-
dom start node.

In this paper, we describe a novel approximate APSS
method that leverages properties of the object vectors and their
neighbors to effectively select few comparison candidates.
Our method works in two steps. First, we leverage the prefix
filtering and feature weight priority ideas to quickly construct
an approximate min−ε kNNG, while ignoring unsuitable

candidates. In the second step, our method traverses the graph
to identify candidates, prioritizing those objects that are likely
to be a part of the APSS solution. Unlike the naı̈ve approach,
the complexity of our method is much smaller than O(n2),
yet it leads to identifying most of the nearest neighbors up
to 35.81x faster than the best alternative at 0.9 recall. Our
contributions are as follows:
• We propose CANN, a novel approximate algorithm for

solving the APSS problem. Unlike previous methods,
which use filtering based candidate generation, CANN
uses feature and neighborhood graph weights to gather
a small set of favorable candidates that will be compared
with a query.

• We analyze the properties of neighborhood graphs of
six real-world datasets at varying minimum similarity
thresholds and draw conclusions on the utility of the
APSS output for solving data mining problems.

• We conduct extensive experiments that measure both the
effectiveness and efficiency of our method, compared
to several state-of-the-art approximate and exact APSS
baselines.

The remainder of the paper is organized as follows. We
give a formal problem statement and describe our notation
in Section II. In Section III, we present our algorithm. In
Section IV, we describe the datasets, baseline algorithms, and
performance measures used in our experiments. We present
our experiment results and discuss their implications in Sec-
tion V, and Section VI concludes the paper.

II. PROBLEM STATEMENT

Given object di in a set D of n objects, we seek to find its
nearest neighbors, the set of objects in D \ {di} whose cosine
similarity with di is at least ε . The εNNG of D is a directed
graph G = (V, E) in which vertices correspond to the objects
and an edge (vi, vj) indicates that the jth object is among the
nearest neighbors of the ith object, i.e., their similarity is at
least ε . An approximate εNNG may not contain all the nearest
neighbors for each object, yet the present edges will denote
actual neighbors. In other words, we assume the similarity
between objects is computed exactly and those objects with
similarity below ε are not considered neighbors.

Borrowing the notation from [10], we will use di to indicate
the ith object, di to indicate the feature vector associated with
the ith object, and di, j to indicate the value (or weight) of the
jth feature of object di . Since the cosine function is invariant
to changes in vector lengths, we assume that all vectors have
been scaled to be of unit length (| |di | | = 1, ∀di ∈ D), which
simplifies computing the similarity between two vectors di and
dj to their dot-product, which we denote by

〈
di, dj

〉
.

An inverted index is a data structure that has been exten-
sively used in Information Retrieval and Data Mining to speed
up similarity computations for sparse data. It consists of a set
of m lists, I = {I1, I2, . . . , Im}, one for each feature, such that
list Ij contains pairs (di, di, j), where di is an indexed object
with a non-zero weight for feature j and di, j is that weight.

Given some dimension p, the prefix (vector) d≤pi can be
thought of as the same vector di with all values for features
j, j > p, set to 0. The suffix vector d>pi is analogously defined.
Given these definitions, it is easy to verify that the dot-product
of a query vector dq with a candidate dc can be decomposed
as the sum of the candidate prefix and suffix dot-products with
the query, 〈

dq, dc

〉
=

〈
dq, d≤pc

〉
+

〈
dq, d>pc

〉
.

III. CONSTRUCTING THE SIMILARITY GRAPH

In this section, we will describe our approximate APSS
method, CANN. Our method works in two steps, as shown in
Algorithm 1. First, CANN leverages features with high weight
in object vectors to quickly construct an initial approximate
min−ε kNNG. Unlike previous kNNG construction methods,
CANN eliminates from consideration the majority of the objects
that cannot have a similarity of at least ε when building
the graph. Limiting the neighborhood size to k allows our
method to construct an initial similarity graph while bounding
the overall memory usage. In the second step, our method
traverses the initial graph to identify candidates for building
the εNNG, prioritizing objects that are likely to be in the APSS
solution. The following subsections discuss the steps in detail.

Algorithm 1 The CANN algorithm
1: function CANN (D, ε, k, µ1, µ2)
2: N ← InitialGraph (D, ε, k, µ1)
3: ImproveGraph (D, ε, k, µ2, N)

A. Min-ε kNNG construction

The initial graph construction step is detailed in Algo-
rithm 2. CANN first builds a partial inverted index for the
objects, indexing only a few of the leading features in each
vector. Then, it uses a sorted version of the inverted lists and
of the vectors to prioritize candidates that are selected for
comparison with each query.

When choosing candidates to be compared with a query
object, CANN takes advantage of the prefix filtering idea [5]
as a way to automatically eliminate many objects that cannot
be similar enough. As applied in our method, it states that a
query object cannot be similar enough if it has no features in
common with a candidate in its prefix, given an appropriately
chosen prefix. There are several ways to select the prefix fea-
tures for a vector that have been detailed in the literature [3],
[5], [6]. We use a simple method, which we first proposed
in [6], that is both effective and efficient to compute. CANN
indexes the leading features of each vector until the L2-norm
of its suffix falls below the threshold ε .

To see why prefix filtering is useful, consider a candi-
date dc that has prefix features {2, 7, 11} and suffix fea-
tures {12, 15, 19}, and a query dq that has non-zero features
{1, 9, 12, 15, 19}. According to the prefix selection principle,
the suffix norm of dc, ‖d> jc ‖ < ε . Additionally, note that
‖dq ‖ = 1, since all vectors are normalized. Therefore, even

though the query and candidate have many features in com-
mon in the candidate suffix, based on the Cauchy-Schwarz
inequality, their suffix dot-product will be below ε ,〈

dq, d>pc

〉
≤ ‖dq ‖‖d>pc ‖ < ε.

Since the query does not have any non-zero values for the
{2, 7, 11} features, thus it has no features in common with the
candidate in its prefix, the prefix dot-product

〈
dq, d≤pc

〉
will

be 0, which means the overall similarity of the vectors will
be below ε . CANN automatically avoids this object by only
choosing candidates for the query dq from the posting lists in
the partial inverted index associated with non-zero features in
the query.

Algorithm 2 Min-ε kNNG construction in CANN
1: function INITIALGRAPH(D, ε, k, µ1)
2: Ni ← ∅ for i = 1, . . . , n . Neighbor lists
3: L ← ∅ . Candidate list
4: T ← ∅ . Processed items
5: H ← ∅ . Query hash table
6: for each q = 1, . . . , n do . Create partial inverted index
7: for each j = 1, . . . ,m s.t. dq, j > 0 and ‖d> j

q ‖ ≥ ε do
8: Ij ← Ij ∪ {(dq, dq, j)}
9: Sort inverted lists in non-increasing value order.

10: for each q = 1, . . . , n do
11: T [dc] ← 1 for all (dc, s) ∈ Nq ; l ← 0
12: for each (j, qj) ∈ sorted(dq) do . non-increasing value order
13: for each (dc, dc, j) ∈ Ij while l < µ1 do
14: if dc > dq and not T [dc] then
15: s ← BoundedSim(dq, dc, ε)
16: if s ≥ ε then
17: L ← L ∪ (dc, s)
18: if |Nc | < k then
19: Nc ← Nc ∪ (dq, s)
20: T [dc] ← 1
21: l ← l + 1
22: Add current neighbors from Nq to L.
23: Nq ← neighbors with top-k similarity values in L.
24: return

⋃n
i=1 Ni

CANN chooses up to µ1 candidates to compare with each
query by iterating through objects in inverted index lists.
Based on the idea that objects with high weight features in
common with the query are more likely to be neighbors [10],
our method prioritizes candidates in each list by first sort-
ing the lists in non-increasing value order. Moreover, CANN
chooses list processing order based on the non-increasing
query weight value of their associated features. Taking ad-
vantage of the commutativity property of cosine similarity,
CANN only chooses candidates that follow the query in the
processing order. Additionally, it avoids comparing an object
multiple times with the query by tagging it as done (1) in a
bit-vector data structure (T). When the computed similarity is
above ε , the candidate is added to the list L, and the query is
added to the candidate’s neighborhood if its size is below k.

Since each query will be compared against many candidates,
CANN uses a hash table to store non-zero query features
and their associated suffix norms. This allows dot-products
to be computed in a similar way to a sparse-dense vector
dot-product (Algorithm 3), iterating only through the non-
zero values of the candidate and looking up query values in

Algorithm 3 Bounded similarity computation with pruning
1: function BOUNDEDSIM(dq, dc, ε)
2: s ← 0
3: for each j = 1, . . . ,m s.t. dc, j > 0 do
4: if dq, j > 0 then
5: s ← s + dq, j × dc, j
6: if s + ‖d> j

q ‖ × ‖d
> j
c ‖ < ε then

7: return -1
8: return s

the hash table1. However, CANN does not fully compute the
dot-product in most cases. After each successful multiply-add,
it computes an upper-bound estimate on the similarity based
on the Cauchy-Schwarz inequality applied to the query and
candidate suffix vectors. If what has been computed thus far
(s), which amounts to the prefix dot-product of the vectors,
plus the suffix similarity estimate is below ε , the computation
can be safely terminated and the candidate pruned.

B. Candidate selection for similarity search
In its second step, CANN finds the nearest neighbors for each

query by traversing the initial kNNG. It first creates an inverted
index of the graph’s adjacency matrix, which helps avoid re-
computing similarities for candidates in whose neighborhoods
the query already resides (reverse neighborhood). After tag-
ging both objects in the query’s neighborhood and reverse
neighborhood, CANN uses a max heap to prioritize neighbor-
hoods it should traverse in search for candidates, namely the
neighborhoods of neighbors with high similarity. From those
neighborhoods, CANN will pick up to µ2 candidates, in non-
increasing order of their similarity values. Those candidates
who are not pruned by the BoundedSim function are included
in the output. Finally, CANN updates the stored top-k list of
neighbors as a way to improve the search for subsequent
queries.

Algorithm 4 εNNG construction in CANN
1: function IMPROVEGRAPH(D, ε, k, µ2, N)
2: I ← Index(N) . Graph adjacency matrix inverted index
3: for each q = 1, . . . , n do
4: L ← ∅; T ← ∅; H ← ∅; l ← 0
5: Q ← ∅ . Max heap
6: T [dc] ← 1 and L ← L ∪ (dc, s) for all (dc, s) ∈ Iq
7: T [dc] ← 1 for all (dc, s) ∈ Nq

8: Insert(Q, (dc, s)) for all (dc, s) ∈ Nq

9: while Size(Q) > 0 do
10: (dc, s) ← Extract(Q)
11: L ← L ∪ (dc, s)
12: if l < µ2 then
13: for each (db, v) ∈ Nc do
14: if not T [dc] then
15: s ← BoundedSim(dq, dc, ε)
16: if s ≥ ε then
17: Insert(Q, (db, s))
18: T [dc] ← 1
19: l ← l + 1
20: Output dq neighbors in L.
21: Nq ← neighbors with top-k similarity values in L.

C. Complexity analysis
CANN pre-computes and stores suffix L2-norms for all non-

zero features in the vectors, which takes O(z) time, where z

1We omitted the hashing from the algorithms to simplify the presentation.

is the number of non-zeros. The pre-processing and sorting
steps are overshadowed by the similarity computations. CANN
computes at most n × µ1 similarities in step 1 and n × µ2
similarities in step 2. Therefore, the overall complexity of
CANN is O(n(µ1 + µ2)ν) � O(n2ν), where ν is the average
number of non-zeros in a dataset vector.

IV. EXPERIMENT SETUP

A. Methods

We compare our approach, CANN, against our previous
exact method, L2AP [6], and two approximate APSS vari-
ants, L2AP-Approx [6] (which we denote by L2AP-a) and
BayesLSH-Lite [7] (denoted as BLSH-l). Efficient C/C++
based implementations for the baselines were made available
by their respective authors. Unlike our method, since it seeks
the exact solution, L2AP generates all potential candidates,
not just those likely to be in the εNNG. It uses a slightly
more complex way to determine vector prefixes than our
method, but uses the same L2-norm pruning strategy when
generating candidates. L2AP uses many different filtering
conditions to prune the majority of false-positive candidates,
which results in efficient exact εNNG construction. BLSH-
l uses the same candidate generation strategy as AllPairs [3],
but prunes many of the candidates through similarity estimates
obtained through Bayesian inference. L2AP-a combines the
candidate generation step from L2AP with some of the L2AP
verification strategies and the Bayesian pruning in BLSH-l.

B. Datasets

We consider six real-world datasets in our work, with
were graciously provided by Venu Satuluri and were also
used in [7] and [6]. They represent three text collections
(RCV1, WW500k, and WW100k), and three social networks
(Twitter, Wiki, Orkut), whose statistics are provided in Table I.
Both link and text-based datasets are represented as TF-IDF
weighted vectors. We present additional details below.
• RCV1 is a standard benchmark corpus containing over

800,000 newswire stories provided by Reuters, Ltd. for
research purposes, made available by Lewis et al. [12].

• WikiWords500k was kindly provided to the authors by
Satuluri and Parthasarathy [7], along with the Wiki-
Words100k and WikiLinks datasets. It contains doc-
uments with at least 200 distinct features, extracted
from the September 2010 article dump of the English
Wikipedia2 (Wiki dump).

• WikiWords100k contains documents from the Wiki
dump with at least 500 distinct features.

• TwitterLinks, first provided by Kwak et al. [13], contains
follow relationships of a subset of Twitter users that
follow at least 1,000 other users. Vectors represent users,
and features are users they follow.

• WikiLinks represents a directed graph of hyperlinks
between Wikipedia articles in the Wiki dump.

2http://download.wikimedia.org

• OrkutLinks contains the friendship network of over 3M
users of the Orkut social media site, made available by
Mislove et al. [14]. Vectors represent users, and features
are friends of the users. A user could have at most 1000
friends in Orkut.

TABLE I
DATASET STATISTICS

Dataset n m nnz
RCV1 804,414 43,001 61M

WW500k 494,244 343,622 197M
WW100k 100,528 339,944 79M

Twitter 146,170 143,469 200M
Wiki 1,815,914 1,648,879 44M
Orkut 3,072,626 3,072,441 223M

For each dataset, n is the number of vectors/objects (rows), m is the
number of features (columns), and nnz is the number of non-zeros.

C. Execution environment and evaluation measures

Our method and all baselines are serial programs. CANN
was implemented in C and compiled with gcc 6.0.1 (-O3
enabled). Each method was executed, without other running
programs, on a server with dual-socket 2.8 GHz Intel Xeon
X5560 (Nehalem) processors and 24 Gb RAM. We varied
ε between 0.3 and 0.9, in increments of 0.1. We measure
efficiency as the total execution time for the method (wall-
clock, in seconds).

We tested each approximate method under a large range of
meta-parameters. We tested BLSH-l and L2AP-a by setting
the expected false negative rate (ε in [7]) to each value
in {0.01, 0.02, . . . , 0.09, 0.1, 0.2, . . . , 1.0}. We also varied the
number of hashes, h, testing values in {128, 256, 384, 512}.
We tested CANN with k in {1, 5, 10, 25, 50, . . . , 250} and set
µ1 = α × k, given alpha ∈ {1, 2, . . . , 10}, and µ2 = 5 × µ1.
For each combination of parameters, we executed the method
three times and averaged the resulting execution times. We
report, at each level of recall, the best execution time for the
method given our manual parameter search.

We use average recall to measure the accuracy of the
constructed εNNG. We obtain the correct εNNG via a brute-
force search, then compute the average recall as the mean of
recall values for each query, were recall is computed as the
fraction of (all) relevant/true neighbors that were included by
the algorithm in the query’s neighborhood.

V. RESULTS & DISCUSSION

Our experiment results are organized along several direc-
tions. First, we analyze statistics of the output neighborhood
graphs for the real-world datasets we use in our experiments.
Then, we examine the effectiveness of our method at choosing
candidates and pruning the similarity search space. Finally, we
compare the efficiency of our method against existing state-
of-the-art exact and approximate baselines.

A. Neighborhood graph statistics

While sparsity of the input vectors plays a big role in the
number of objects that must be compared to solve the APSS

problem, the number of computed similarities is also highly
dependent on the threshold ε . We studied properties of the
output graph to understand how the input threshold can affect
the efficiency of search algorithms. Each non-zero value in the
adjacency matrix of the neighborhood graph represents a pair
of objects whose similarity must be computed and cannot be
pruned. A fairly dense neighborhood graph adjacency matrix
means any APSS algorithm will take a long time to solve the
problem, no matter how effectively it can prune the search
space. Table II shows the average neighborhood size (µ) and
neighborhood graph density (ρ) for six of the test datasets and
ε ranging from 0.1 to 0.9. Graph density is defined here as the
ratio between the number of edges (object pairs with similarity
at least ε) and n(n − 1), which is the number of edges in a
complete graph with n vertices.

TABLE II
NEIGHBORHOOD GRAPH STATISTICS

ε µ ρ µ ρ µ ρ
WW500k WW100k RCV1

0.1 1,749 3.5e-03 641 6.4e-03 10,986 1.4e-02
0.2 233 4.7e-04 101 1.0e-03 2,011 2.5e-03
0.3 64 1.3e-04 33 3.3e-04 821 1.0e-03
0.4 25 5.1e-05 16 1.7e-04 355 4.4e-04
0.5 10 2.2e-05 10 1.0e-04 146 1.8e-04
0.6 4.7 9.5e-06 6.3 6.3e-05 57 7.2e-05
0.7 2.1 4.2e-06 4.4 4.3e-05 25 3.2e-05
0.8 0.93 1.9e-06 2.9 2.9e-05 14 1.8e-05
0.9 0.28 5.7e-07 0.96 9.6e-06 8.1 1.0e-05

Wiki Twitter Orkut
0.1 801 4.4e-04 875 6.0e-03 76 2.5e-05
0.2 220 1.2e-04 259 1.8e-03 21 6.9e-06
0.3 74 4.1e-05 185 1.3e-03 7.2 2.4e-06
0.4 20 1.1e-05 138 9.5e-04 2.3 7.6e-07
0.5 7.6 4.2e-06 93 6.4e-04 0.69 2.3e-07
0.6 3.3 1.8e-06 49 3.4e-04 0.22 7.2e-08
0.7 1.7 9.6e-07 15 1.1e-04 0.09 3.1e-08
0.8 0.87 4.8e-07 2.8 1.9e-05 0.07 2.1e-08
0.9 0.35 1.9e-07 0.11 7.3e-07 0.06 2.0e-08

The table shows the average neighborhood size (µ) and
neighborhood graph density (ρ) for the test datasets and ε ranging
from 0.1 to 0.9.

As expected, the similarity graph is extremely sparse for
high values of ε , with less than one neighbor on average
in all but one of the datasets at ε = 0.9. However, the
average number of neighbors and graph density increase
disproportionally for the different datasets as ε increases. The
Orkut objects have less than 10 neighbors on average even
at ε = 0.3, while the RCV1 objects have more than 100
neighbors on average at ε = 0.5. To put things in perspective,
the 8.84 billion edges of the RCV1 neighborhood graph for
ε = 0.1 take up 204 Gb of hard drive space, and more than
half of those represent similarities below 0.3, which are fairly
distant neighbors. Nearest neighbor based classification or
recommender systems methods often rely on a small number
(often 1-10) of each object’s nearest neighbors to complete
their task. This analysis suggests that different ε thresholds
may be appropriate for the analysis of different datasets.
Searching the RCV1 dataset using ε = 0.8, Twitter using
ε = 0.7, WW100 and WW500 using ε = 0.5, Wiki using

Fig. 1. Neighbor count distributions for several values of ε .

ε = 0.4, and Orkut using ε = 0.2 would provide enough
nearest neighbors on average to complete the required tasks.

Figure 1 gives a more detailed picture of the distribution of
neighborhood sizes for the similarity graphs in Table II. The
max line shows the number of neighbors that would be present
in the complete graph. The purple line for ε = 0.9 is not visible
in the figure for some datasets, due to the extreme sparsity of
that graph. The vertical difference between each point on a
distribution line and the max line represents the potential for
savings in filtering methods, i.e., the number of objects that
could be pruned without computing their similarity in full.
Note that the y-axis is log-scaled. While there is a potential
for pruning more than half of the objects in each object search
in general, graph datasets show much higher pruning potential,
especially given high minimum similarity thresholds.

B. Effectiveness of candidate choice and pruning

We instrumented our code to count the number of object
pairs that were considered for similarity computation (# can-
didates) and the number of full executed dot-product/similarity
computations (# dot-products). In Table III, we report the
percent of candidates (cand) and dot-products (dps) executed
by our method as opposed to those of a naı̈ve APSS method
(n(n − 1)/2), for each of the six test datasets and ε ranging
from 0.3 to 0.9. CANN was tuned to achieve 0.9 recall.

The results show that CANN is able to achieve high recall
in computing the εNNG even while considering much fewer
than 1% of the candidates in general. Moreover, most of
the candidates are pruned by the L2-norm based filtering in
CANN, resulting in 0.01% or fewer of the potential similarities
being actually computed. The candidate selection and pruning
effectiveness in our method lead to higher efficiency than
competing methods, as we show in the next experiment.

C. Execution efficiency

Figure 2 shows the efficiency of the competing methods
at different recall levels, for two of the datasets and ε ∈
{0.5, 0.7, 0.9}. L2AP is an exact method and is thus only
present once in each sub-figure. The execution of both L2AP-
a and BLSH-l are dominated by their respective candidate

TABLE III
CANDIDATE CHOICE AND PRUNING EFFECTIVENESS

ε cand dps cand dps cand dps
WW100k WW500k RCV1

0.3 0.2908 0.0380 0.1400 0.0152 0.4040 0.1058
0.4 0.1335 0.0176 0.0488 0.0060 0.2014 0.0521
0.5 0.0931 0.0094 0.0268 0.0022 0.1408 0.0271
0.6 0.0650 0.0045 0.0216 0.0010 0.1165 0.0134
0.7 0.1546 0.0057 0.0209 0.0004 0.0963 0.0058
0.8 0.3505 0.0042 0.0710 0.0002 0.1117 0.0040
0.9 0.3480 0.0012 0.1403 0.0001 0.0864 0.0019

Twitter Orkut Wiki
0.3 1.2240 0.2905 0.0063 0.0044 0.0194 0.0075
0.4 0.8944 0.1990 0.0045 0.0029 0.0100 0.0031
0.5 0.8007 0.1501 0.0029 0.0018 0.0087 0.0020
0.6 0.5810 0.0852 0.0018 0.0010 0.0055 0.0010
0.7 0.5374 0.0419 0.0009 0.0005 0.0042 0.0006
0.8 0.4131 0.0164 0.0003 0.0002 0.0025 0.0003
0.9 0.4736 0.0070 0.0003 0.0001 0.0020 0.0001

The table shows the percent of potential object comparisons (cand)
and computed dot-products (dps) executed by our method as
opposed to those of a naı̈ve approach, when tuned to achieve 0.9
recall, for the test datasets and ε ranging from 0.3 to 0.9.

Fig. 2. Efficiency performance of the competing methods at different recall
levels.

generation stage, and increasing the allowed error rate in the
method seems to do little to improve the overall efficiency. In
contrast, our method can be tuned, via the initial neighborhood
size k and the candidate list size parameters µ1 and µ2, and can
achieve over an order of magnitude performance improvement
at lower recall levels as opposed to very high recall. CANN is
still competitive at very high recall levels (e.g., 0.99) reaching
execution times similar to the best exact method, L2AP.

The results of Data Mining algorithms are often not affected
by an approximate nearest neighbor graph solution if average
recall is sufficiently high [15], e.g., 0.9. As such, we compared

Fig. 3. Execution times for CANN and baselines for ε between 0.3 and 0.9,
at minimum recall 0.9.

the efficiency of all methods for this acceptable recall level
and report results in Figure 3, for each of the six test datasets
and ε between 0.3 and 0.9. As we also reported in [6],
L2AP-a performs similarly to L2AP, and the exact method
is sometimes faster than the approximate one due to time
spent hashing in L2AP-a. The candidate generation in BLSH-
l is not as competitive as the one in L2AP, and Bayesian
pruning could not overcome the deficit in most cases, making
BLSH-l the slowest baseline in general. CANN outperformed
all baselines in all experiments except RCV1 at ε = 0.9, where
the speedup value was 0.97x. Speedup ranged between 0.97x–
35.81x for text datasets, and 1.05x–6.18x for network datasets.
Given the dataset-specific similarity thresholds suggested in
Section V-A, which would result in at least 10 neighbors
on average being included in the εNNG, CANN achieved
an efficiency improvement of 2.1x–35.81x for the different
datasets.

VI. CONCLUSION

In this paper, we presented CANN, an efficient approximate
algorithm for constructing the cosine similarity graph for a set
of objects. Our method leverages properties of the data and an
initial incomplete neighborhood graph to prioritize choosing
candidates for a query that are likely to be its neighbors.
Furthermore, our method leverages recently developed filtering
techniques to prune much of the search space both before
and while computing candidate similarities. We conducted
extensive experiments that measure both the effectiveness and
efficiency of our method, compared to several state-of-the-art
approximate and exact similarity graph construction baselines.
Our method effectively reduces the number of candidates that

should be compared to achieve a certain level or recall, and
prunes many of the candidates without fully computing their
similarity, resulting in up to 35.81x speedup over the best
alternative method.

ACKNOWLEDGMENT

This work was in part made possible due to computing facilities
provided by the Digital Technology Center (DTC) and the Minnesota
Supercomputing Institute (MSI) at the University of Minnesota. We
thank the reviewers for their helpful comments.

REFERENCES

[1] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
clustering of the web,” in Selected papers from the sixth international
conference on World Wide Web. Essex, UK: Elsevier Science Publishers
Ltd., 1997, pp. 1157–1166.

[2] A. Metwally, D. Agrawal, and A. El Abbadi, “Detectives: Detecting
coalition hit inflation attacks in advertising networks streams,” in Pro-
ceedings of the 16th International Conference on World Wide Web, ser.
WWW ’07. New York, NY, USA: ACM, 2007, pp. 241–250.

[3] R. J. Bayardo, Y. Ma, and R. Srikant, “Scaling up all pairs similarity
search,” in Proceedings of the 16th International Conference on World
Wide Web, ser. WWW ’07. New York, NY, USA: ACM, 2007, pp.
131–140.

[4] G. Karypis, “Evaluation of item-based top-n recommendation algo-
rithms,” in Proceedings of the Tenth International Conference on In-
formation and Knowledge Management, ser. CIKM ’01. New York,
NY, USA: ACM, 2001, pp. 247–254.

[5] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for sim-
ilarity joins in data cleaning,” in Proceedings of the 22nd International
Conference on Data Engineering, ser. ICDE ’06. Washington, DC,
USA: IEEE Computer Society, 2006, pp. 5–.

[6] D. C. Anastasiu and G. Karypis, “L2ap: Fast cosine similarity search
with prefix l-2 norm bounds,” in 30th IEEE International Conference
on Data Engineering, ser. ICDE ’14, 2014.

[7] V. Satuluri and S. Parthasarathy, “Bayesian locality sensitive hashing for
fast similarity search,” Proc. VLDB Endow., vol. 5, no. 5, pp. 430–441,
Jan. 2012.

[8] Y. Park, S. Park, S.-g. Lee, and W. Jung, “Greedy filtering: A scalable
algorithm for k-nearest neighbor graph construction,” in Database
Systems for Advanced Applications, ser. Lecture Notes in Computer
Science. Springer-Verlag, 2014, vol. 8421, pp. 327–341.

[9] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph
construction for generic similarity measures,” in Proceedings of the 20th
International Conference on World Wide Web, ser. WWW ’11. New
York, NY, USA: ACM, 2011, pp. 577–586.

[10] D. C. Anastasiu and G. Karypis, “L2knng: Fast exact k-nearest neighbor
graph construction with l2-norm pruning,” in 24th ACM International
Conference on Information and Knowledge Management, ser. CIKM
’15, 2015.

[11] Y. Malkov, A. Ponomarenko, A. Logvinov, and V. Krylov, “Approximate
nearest neighbor algorithm based on navigable small world graphs,”
Information Systems, vol. 45, pp. 61–68, 2014.

[12] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1: A new benchmark
collection for text categorization research,” J. Mach. Learn. Res., vol. 5,
pp. 361–397, Dec. 2004.

[13] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social
network or a news media?” in WWW ’10: Proceedings of the 19th
international conference on World wide web. New York, NY, USA:
ACM, 2010, pp. 591–600.

[14] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proc.
Internet Measurement Conf., 2007.

[15] J. Chen, H.-r. Fang, and Y. Saad, “Fast approximate knn graph construc-
tion for high dimensional data via recursive lanczos bisection,” J. Mach.
Learn. Res., vol. 10, pp. 1989–2012, Dec. 2009.

