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1 Introduction

Companies such as Netflix and Amazon rely on the ability to recommend me-
dia content or products that users are likely to consume. Most companies use
recommender systems, which are software that select products to recommend to
individual customers. Recommender systems are ubiquitous in today’s market-
place and have great commercial importance, as evidenced by the large number
of companies that sell recommender systems solutions.

Successful recommender systems use past product purchase and satisfaction
data to make high quality personalized recommendations. The volume of data
available to recommender systems today is staggering and forces a total re-
evaluation of the methods used to compute recommendations. Parallel and
distributed computing, once a niche reserved for simulations and other scientific
software, is at the heart of Big Data and must be at the forefront of algorithm
design.

This paper is an overview of recommender systems in the era of Big Data.
We highlight prevailing recommendation algorithms and how they have been
adapted to operate in parallel computing environments. These include tradi-
tional parallel computing environments, such as OpenMP [25] and MPI [45],
and also more recent distributed computing engines, such as MapReduce [29]
and Spark [113]. Within the recommender systems context, we focus our discus-
sion on scaling up two popular approaches, namely nearest neighbor and latent
factor based recommendation.
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Table 1: Notation.

Symbol Description
X matrix
x column vector
xT row vector
m number of users
n number of items
R rating matrix of size m× n
u user
i item
rui rating of user u on item i
r̂ui predicted rating of user u on item i
k number of neighbors in neighborhood models
f number of factors/latent dimensions
pu user latent factor of size f for u
qi item latent factor of size f for i
P matrix of size m× f containing the user latent factors
Q matrix of size n× f containing the item latent factors
λ l1 regularization parameter
β l2 regularization parameter

2 An Overview of Recommender Systems

Two common problems that recommender systems address are rating prediction
and top-N recommendation. In the former, the goal is to compute the rating
that a user would give for an item. In the latter, the object is to provide the
user with a list of N items that they will find interesting and will likely enjoy.

Two of the most widely used approaches for computing recommendations are
neighborhood-based and latent factor model-based algorithms. In the neighborhood-
based approaches, the similarities between the items (item-based) or the users
(user-based) are used to compute recommendations. In the latent factor model-
based approaches, the users and the items are mapped in the same latent space
and the items closest to a user in this space serve as the recommendations.
Latent factor approaches have been shown to be superior for solving the prob-
lem of rating prediction. In contrast, item-based neighborhood approaches have
proven to be superior for the top-N recommendation problem. We will discuss
these approaches in the following sections.

Table 1 presents the notation that we will use in the rest of the paper.

2.1 Neighborhood-based collaborative filtering

Neighborhood-based methods rely on the similarity among users or items to
generate recommendations.
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2.1.1 User-based Methods

In the user-based neighborhood method [62], a set of users similar to the target
user is identified as the user’s neighborhood. The similarity among users is
most often computed as the cosine similarity or Pearson correlation coefficient
between the vectors denoting the two users’ item ratings. By considering the
k most similar users who have rated the target item i in the neighborhood of
the uth user (known as the k-nearest-neighbor approach or kNN), the predicted
rating of user u on item i is given by

r̂ui = µu +

∑
v∈Nk

u (i) sim(u, v)(rvi − µv)∑
v∈Nk

u (i) sim(u, v)
, (1)

where sim(u, v) denotes the similarity between the users u and v, and µu and
µv are the means of the ratings provided by users u and v, respectively. The
symbol N k

u (i) represents the set of the k most similar users to the user u, who
have rated the item i.

2.1.2 Item-based Methods

The item-based neighborhood method [31, 85] computes the preference of user
u on target item i by using the similarity to the target item of other items rated
by the user. Analogous to the user-based neighborhood method, the cosine
similarity or Pearson correlation coefficient can be used to measure similarity
among items. The predicted rating of u on i is given by

r̂ui = µi +

∑
j∈Nk

i (u) sim(i, j)(ruj − µj)∑
j∈Nk

i (u) sim(i, j)
. (2)

where sim(i, j) denotes the similarity between the items i and j, and µi and
µj are the means of the ratings received by items i and j, respectively. The
symbol N k

i (u) represents the set of the k most similar items to the item i, that
are rated by the user u.

In contrast to the standard item-based method which uses a predefined
similarity measure like cosine or Pearson correlation, Sparse LInear Methods
(SLIM) [73] learn the item-item relationships from the data instead. It has
been shown that SLIM is one of the best methods for top-N recommendation.
In SLIM, the rating for an item is predicted as a sparse aggregation of the
existing ratings provided by the user

r̂ui = rTuwi, (3)

wi is a sparse vector containing non-zero aggregation coefficients over all items.
The sparse aggregation coefficient matrix W of size m×m, capturing the item-
item relationships is learned by minimizing the squared prediction error as fol-

3



lows

minimize
W

1

2
||R−RW||2F +

β

2
||W||2F + λ||W||1

subject to W ≥ 0

diag(W) = 0.

(4)

Parameters λ and β enforce standard regularization and sparsity on the model
parameters. The non-negativity constraint on W imposes the item-item re-
lations to be positive. The constraint diag(W) = 0 is added to avoid trivial
solutions (e.g., W corresponding to the identity matrix) and ensure that rui
is not used to compute r̂ui. As a way of improving recommendations in very
sparse datasets, Kabbur et al. [54] extended SLIM by learning the item-item
similarity matrix as a product of two low-dimensional latent factor matrices.

However, both the traditional item-based methods as well as SLIM capture
only pairwise relations between items and are not capable of capturing higher-
order relations. Mukund et al. [31] developed HOKNN (Higher-Order k-NN), in
which the most similar items are identified not only for each individual item, but
also for sufficiently frequent itemsets that are present in the active user’s basket.
Similarly, Christakopoulou et al. [22] introduced HOSLIM (Higher-Order Sparse
LInear Method), which learns both item-item and itemset-item similarities.

Another potential drawback of the item-based methods is that they estimate
only a single model for all the users. In many cases, there are differences in users’
behavior, which cannot be captured by a single model. Recently, GLSLIM [23]
was proposed, which combines global and local SLIM models in a personalized
way and automatically identifies the appropriate user subsets.

The learning of item-item similarities in SLIM [73], HOSLIM [22] and GLSLIM [23]
for large datasets can be scaled by learning similarities in parallel for every tar-
get item i, as every column of the sparse aggregation coefficient matrix can be
learned independently from the other columns.

2.2 Latent factor model-based collaborative filtering

2.2.1 Matrix factorization

Matrix factorization approaches are suited for the rating prediction task and
have gained high popularity since the Netflix Prize [64, 66, 98]. They assume
that the user-item rating matrix R is low rank and can be computed as a
product of two matrices known as the user and the item latent factors (P and
Q respectively). Then, the predicted rating for the user u on the item i is given
by

r̂ui = pT
uqi.

The completed matrix R̂ = PQT is used to serve the recommendation to the
user for the items for which his/her preferences were unknown in the original
matrix R.
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The user and the item latent factors are estimated by minimizing a regular-
ized square loss

minimize
P,Q

1

2

∑
rui∈R

(
rui − pT

uqi

)2
+
β

2

(
||P||2F + ||Q||2F

)
, (5)

where the parameter β controls the Frobenius norm regularization to prevent
overfitting.

2.2.2 Singular Value Decomposition (SVD)

The key idea of SVD models [30] is to factorize the user-item rating matrix
to a product of two lower rank matrices, one containing the user factors and
the other containing the item factors. Since conventional SVD is undefined in
the presence of missing values, Cremonesi et al [24] developed a method, called
PureSVD, which treats all the missing values as zeros. PureSVD is very well
suited for the top-N recommendation task, and estimates the rating matrix R
as

R̂ = UΣQT ,

where U is a n× f orthonormal matrix, Q is an m× f orthonormal matrix and
Σ is an f × f diagonal matrix, containing the f largest singular values. It can
be noted that the matrix P representing the user factors can be derived by

P = UΣ.

The matrices P and Q can be estimated by solving the following optimization
problem with orthonormal constraints

minimize
P,Q

1

2
||R−PQT ||2F +

β

2

(
||P||2F + ||Q||2F

)
subject to PTP = I

QTQ = I,

(6)

where I is the identity matrix.

2.3 Contextual Recommendations

Beyond the users’ rating history, in multiple cases, there is also a plethora of
contextual data available that can be used to enhance recommendation qual-
ity [1, 12, 74, 78, 82]. Contexts include time, location, text, or any additional
information associated with the users, the items or the ratings themselves.

In literature, there are works which use context as a means to pre-filter or
post-filter the recommendations made [1]. The state-of-the-art in contextual
recommendation [56, 83, 91] is treating every context as a different dimension,
thus creating a tensor. Then, instead of having a rating matrix of two dimensions
(users and items), we have a tensor of three dimensions (users, items, and time)
or of four dimensions (users, items, location, and time) etc.
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3 Scaling up nearest-neighbor approaches

Finding nearest neighbors is a critical component in recommender systems. In
this section, we discuss recent trends in scaling up nearest neighbor identifica-
tion to Big Data. Filtering and Approximate Nearest Neighbor (ANN) based
approaches rely on data structures to reduce the number of computed similari-
ties, yet provide error guarantees on identified neighborhoods. Other approaches
simply choose a subset of users or items to search for neighbors in, without
guaranteeing high quality results. Additional performance gains are achieved
via multithreaded and distributed systems. To simplify the discussion, we will
refer to the user or item rating profile as an object and the values it contains as
features.

Identifying neighbors has been studied extensively for several decades in the
form of two related problems. The k-nearest neighbor (kNN) search problem
seeks to find the k objects that have the highest proximity to a query object.
The ε-nearest neighbor (εNN) search (or similarity search) problem finds all
objects with a similarity of at least ε to the query. When the proximity function
is a metric, the problem is also known as radius search, and seeks to find all
objects within ε distance to the query. Recommender systems initially compute
and store the kNN or εNN for each user or item, which are known as kNN graph
construction (kNNG) and all-pairs similarity search (APSS) or similarity join
problems, respectively.

3.1 Filtering based approaches

In recent years, a number of nearest neighbor methods have been proposed for
sparse vectors that work by ignoring (or filtering) object pairs that cannot be
neighbors. The vector representing a user or item rating profile is inherently
sparse, as a user often consumes and rates few of the overall items.

Search methods avoid comparing objects that have no features in common by
using an inverted index data structure. The index consists of a set of lists, one
for each feature among all objects, such that the jth list contains pairs (i, ri,j)
for all objects i that have a non-zero ri,j value for the jth feature. Additional
savings can be achieved by relying on proximity thresholds. Chaudhuri et al. [20]
were first to show that, given a predefined feature processing order, there comes
a point in the feature processing when the un-processed query features do not
have enough weight to lead to a proximity of at least ε with any object in the
index. One can thus identify all potential neighbors for an object by checking
only the inverted lists associated with the first few query features.

Bayardo et al. [15] used the idea in [20], along with a predefined object
processing order, to design a filtering framework for solving the APSS problem.
For each object, the framework first identifies a list of candidates by consulting
the inverted index lists for the first few features in the query object. Each
candidate is then vetted by computing a quick upper bound on its similarity
with the query and comparing it to the threshold ε. Finally, those candidates
that pass this filtering test have their similarities with the query computed and

6



checked against ε. Note that the framework has a null error guarantee. It
outputs the same result as when computing all pairwise similarities and then
filtering those below ε.

The framework proposed by Bayardo et al. [15] has been extended for cosine
similarity by a number of different methods [6, 10, 68, 84, 103]. In their method
L2AP, Anastasiu and Karypis [6] introduced more stringent bounds and new
filtering strategies within the filtering framework, which lead to an order of
magnitude efficiency improvement over previous state-of-the-art methods. The
key to the success of L2AP, and its namesake (L2-norm All-Pairs), is the use
of the L2-norm of the remaining (unprocessed) features in the candidate and
query vectors to compute several powerful similarity upper bounds which lead
to significant efficiency savings in the filtering framework.

In the kNNG construction context, most proposed methods are approximate,
relying on data [77] or neighborhood improvement [33] heuristics to find some of
the nearest neighbors. In contrast, Anastasiu and Karypis [7] developed L2Knng,
an exact kNNG construction filtering-based method. The main idea in L2Knng

is to bootstrap the search with a quickly constructed approximate graph and
then use the minimum similarities in neighborhoods as filtering criteria.

While we focused our summary on cosine similarity as the proximity function
of choice, which has been shown to work well in many recommender systems
settings, filtering has been shown to work well with many other proximity func-
tions when applied to sparse data, including string similarity, Overlap similarity,
and the Dice, Jaccard, and Tanimoto coefficients [9, 15,104,105].

Finding nearest neighbors is inherently a memory bound operation. As a
result, shared memory parallel methods [8, 11] focus on keeping threads busy
and minimizing resource contention. Existing distributed solutions for nearest
neighbor graph construction generally use the MapReduce framework. Most of
these methods rely on the framework’s built-in features to aggregate (reduce)
partial similarities of object pairs computed in mappers [13, 28, 35, 69]. While
some filtering strategies can be used to avoid generating some partial similarities,
these methods often suffer from high communication costs which make then
inefficient for large datasets [5]. Another category of MapReduce methods use
a mapper-only scheme, with no reducers [4, 5, 99]. They partition the set of
objects into subsets (blocks) and apply serial nearest-neighbor search methods
on block pairs. Certain block comparisons can be eliminated by relying on
block-level filtering techniques. Alabduljalil et al. also investigated distributed
load balancing strategies [99] and cache-conscious performance optimizations
for the local searches [4].

3.2 Approximate Nearest Neighbors

Some neighborhood based schemes sometimes rely on latent decomposition as a
way to capture inherent similarities between users or items. A number of differ-
ent dimensionality reduction techniques, such as Singular Value Decomposition
(SVD), Principal Component Analysis (PCA) [79, 101] or Latent Semantic In-
dexing (LSI) [30, 49] have been used to learn dense latent vectors representing
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users [16] or both users and items [65].
The techniques used to accelerate finding neighbors for dense objects differ

based on the number of dimensions. Tree-based methods [18,37,38,67,96] have
been shown to be most effective for low-dimensional embeddings (≤ 20 dimen-
sions). They work by partitioning the search space, allowing neighbor searches
to be prioritized within grids close to the one the query object is in [19]. For
higher number of dimensions, Locality Sensitive Hashing (LSH) [44, 51] based
algorithms find most nearest neighbors and provide theoretic error guarantees
in the expectation.

LSH methods rely on families of functions that hash signatures of similar
objects to the same bucket with high probability. Function families have been
defined for hamming distance, L-p norms, cosine similarity, and the Jaccard
coefficient. Parameters in LSH methods allow tuning the error rate at the cost
of efficiency. Recent methods have focused on improving the serial efficiency
of LSH by estimating object proximity [27, 32], probing nearby hashes [71], or
taking advantage of data statistics [40, 41]. In the parallel domain, Sundaram
et al. [97] proposed a parallel LSH search scheme that achieved query times of
1–2.5 ms in a database of more than 1 billion tweets. Yu et al. [108] focused
instead on optimizing the kNN computation kernel in a multithreaded environ-
ment, after first retrieving neighborhood candidates from LSH tables. Their
kernel fuses proximity calculation with neighborhood selection and achieves a
4x performance improvement over state-of-the-art baselines.

3.3 Sampling based approaches

A number of methods have been developed that reduce the complexity of finding
neighbors by selecting a subset of the objects to compare each object against.
Sarwar et al. [87] and Das et al. [26] propose clustering the objects and then
computing similarities only for objects in the same cluster. Das et al. [26] use
LSH or PLSI to enhance the clustering process.

Koenigstein et al. [60] use importance sampling, first introduced by Ben-
gio et al. [17], to lower the cost of deriving pairwise relations between items.
Every item is assigned a probability proportional to its empirical frequency in
the training set and then the items are sampled according to their proposed
distribution. Kabbur et al. [54] sample the zero entries in the training matrix
and use them along with all the non-zero entries.

4 Scaling Up Latent Factor Approaches

The success of factorization-based approaches has led to a wealth of research on
scaling up factorization to Big Data. These approaches span many optimization
algorithms which feature different strategies for parallelization.
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4.1 Top-N Recommendation

The SVD is at the core of many top-N recommendation algorithms. Com-
puting the SVD of a large, sparse matrix is often done with Lanczos bidiag-
onalization [47, 93]. The bidiagonalization algorithm is iterative and relies on
multiplying the sparse matrix R by a dense vector. Sparse matrix-vector multi-
plication is found in many algorithms for high performance computing and Big
Data and has a large body of research [58, 70, 102, 112]. SLEPc [48] is a ma-
ture, high performance software library that computes the SVD with Lanczos
bidiagonalization.

It is not always necessary to compute the SVD of the full ratings matrix.
Halko et al. [46] survey and extend randomized SVD algorithms which have high
accuracy when the factorization is low rank [46]. Sarwar et al. [86] developed an
incremental SVD algorithm for when R is not constant and new users are being
introduced. Instead of total recomputation, the factorization is only updated
to incorporate the additional ratings.

4.2 Rating Prediction

Equation (5) is a non-convex, computationally expensive problem often called
matrix completion. Several optimization algorithms have been successfully ap-
plied to large scale datasets.

4.2.1 Alternating Least Squares (ALS)

ALS was one of the first matrix completion algorithms applied to large scale
data [114]. The main idea in ALS is based on the observation that, if we solve
Equation (5) for one latent factor at a time, the solution has a linear least squares
solution. ALS is an iterative algorithm which first minimizes with respect to P
and then Q. The process is repeated until convergence.

Let ru be the vector of all ratings supplied by user u. Hu is an |ru|×f matrix
whose rows are the feature vectors qi, for each item i rated in ru. Similarly, ri
is the vector of all ratings supplied for item i, and Hi is an |ri|×f matrix. ALS
proceeds by updating all pu followed by all qi:

pu ←
(
HT

uHu + βI
)−1

HT
u ru, ∀u ∈ 1, . . . ,m

qi ←
(
HT

i Hi + βI
)−1

HT
i ri, ∀i ∈ 1, . . . , n.

(7)

The computational complexity of ALS is O(f2|R| + f3(m + n)) per iteration.
Zhou et al. [114] identified opportunities for parallelism in that all pu can be
independently computed, as can all qi. ALS can be computed on a large dis-
tributed system as long as P and Q fit in memory on each node. Gates et al. [42]
showed how to perform the dense linear algebra in Equation (7) to achieve high
throughput on modern CPUs and GPUs. Schelter et al. [88] developed a MapRe-
duce implementation. ALS is also the algorithm of choice in the Spark machine
learning library, MLlib [72].
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Figure 1: Stratified SGD with three workers. Colored blocks represent sets of
ratings and the rows of P and Q which model them. Each block of ratings can
be processed in parallel.

4.2.2 Stochastic Gradient Descent (SGD)

SGD is an optimization algorithm that trades a large number of iterations for
a low computational complexity. SGD is a conceptually simple method, in
which an iteration consists of selecting ratings at random and updating the
factorization based on the local gradient. Updates are of the form:

eui ← rui − pT
uqi,

pu ← pu + η (euiqi − βpu) ,

qi ← qi + η (euipu − βqi) ,

(8)

where η is a hyperparameter representing the learning rate. The complexity
of Equation 8 is linear in f , resulting in a total complexity of O(f |R|) per
iteration. The low complexity and simple implementation of SGD has led to it
being widely adopted by researchers and industry alike.

SGD is less straightforward than ALS to parallelize. Since processing a
rating updates rows of both P and Q, special care must be taken to prevent
the same rows from being modified at the same time (called a race condition).
There are two broad approaches for parallelizing SGD.

Stratified methods are based on the observation that, if two ratings do not
overlap, meaning they have neither a row or column in common, then they can
be updated with Equation (8) at the same time. Gemulla et al. [43] first used
this technique with DSGD, which imposes a grid on R and identifies blocks
which can be processed in parallel. This strategy is illustrated in Figure 1.
Stratification has proven to be an effective strategy for parallelizing SGD and has
been extended in works on multithreaded environment [75,76,115], distributed
systems [100,111], and even GPUs [53].

Asynchronous methods rely on the stochastic nature of SGD to allow over-
lapping updates. Teflioudi et al. first presented this technique with ASGD [100],
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an SGD algorithm for distributed computing environments. During ASGD,
nodes maintain working copies of P and Q (e.g., locally modified) and updates
are asynchronously communicated several times per iteration. Overlapping up-
dates are averaged with the master copy and sent to workers. Petroni and
Querzoni extended this work with GASGD [80], which uses graph partitioning
to distribute R in order to reduce conflicting updates. Recht et al. introduced
Hogwild! [81], a parallel SGD algorithm for multithreaded environments which
simply applies Equation (8) in parallel without concern for overlapping entries.
When R is sufficiently sparse, updates to P and Q are unlikely to overlap and
convergence is still observed.

4.2.3 Coordinate Descent (CCD++)

Coordinate descent is a class of optimization algorithms which update one pa-
rameter of the output at a time. Yu et al. [109] explored coordinate descent
algorithms for matrix completion and developed CCD++, a parallel algorithm
for multithreaded and distributed environments. CCD++ updates columns of
P and Q in sequence, with a single parameter update taking the form

pus ←
∑

rui∈R(rui − pT
uqi + pusqis)qis

β +
∑

rui∈R q
2
is

. (9)

If all (rui −pT
uqi) are pre-computed, CCD++ has a complexity of O(f |R|) per

iteration, matching SGD. Each column entry is independent and can thus be
computed in parallel.

4.2.4 Emerging Algorithms

While ALS, SGD, and CCD++ have received the majority of attention, special
note should be made of emerging methods based on the alternating direction
method of multipliers (ADMM). ADMM itself is not a new algorithm, but has
recently garnered much attention due to its potential for high scalability in
parallel algorithms. One such recent work is DS-ADMM [110], a stochastic
variant of ADMM for matrix factorization. AO-ADMM [50] is another recent
ADMM work for matrix factorization and interestingly can handle objectives
for both the top-N and rating prediction problems.

4.3 Extensions to Tensor Factorization

Section 2.3 discussed contextual information as a means to improve recommen-
dation quality. This is often accomplished with tensor factorization.

The canonical polyadic decomposition (CPD) is a generalization of the SVD
to tensors that is often used for top-N recommendation. Several parallel algo-
rithms have been designed for the MapReduce paradigm, including GigaTen-
sor [55] and Haten2 [52]. High performance software for distributed systems in-
clude DFacTo [21] and SPLATT [94]. The Tucker decomposition is another SVD
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generalization and has been studied in multithreaded [14] and distributed [59]
environments.

Rating prediction with tensors also uses the CPD and extends Equation (5).
Shao [89] first explored parallel ALS and SGD algorithms for multithreaded
systems. Shin and Kang [92] developed MapReduce algorithms based on ALS.
Karlsson et al. [57] presented ALS and CCD++ algorithms for high performance
distributed systems. Smith et al. [95] later developed high performance ALS,
SGD, and CCD++ algorithms and made them available in SPLATT.

5 Online Recommendation

So far, the paper has focused on ways to compute recommendation models
quickly. In large-scale recommender systems, beyond model computation, it is
crucial that

• the recommendations are presented to the user very fast, and that

• the recommender system is able to handle new data that comes in contin-
uously.

Below, we present some approaches that large-scale systems employ in order to
tackle these challenges.

5.1 Efficient Retrieval of Recommendations

Koenigstein et al. [60,61] propose the use of metric trees, which are binary space-
partitioning trees, for efficient retrieval of recommendations in the context of
neighborhood-based [60] and matrix factorization [61] methods. The authors
also suggest even faster approximate retrieval by clustering users and precom-
puting recommendations for the cluster centers. The system then provides, as
an approximate result, the cluster center recommendation for the cluster that
the user belongs in.

Yin et. al. [106] precompute f lists of ordered items, where every list cor-
responds to a latent factor. When an online query comes, the top-N items are
returned from the f lists in a priority list. The threshold-based algorithm [36]
is employed, for updating the priority of the current list, as well as the thresh-
old store. Yin et. al. [107] based on the previous algorithm, also present a
clustering-based branch and bound algorithm for fast computation of point-of-
interest (POI) recommendation. The POI vectors containing the POI attributes
are first clustered into buckets and then within each bucket, they are sorted
based on their length. This happens offline. At the time of online recommen-
dation, when a query appears, the buckets are sorted according to the inner
product of the query and the upper bound vector of the bucket.

5.2 Cold-Start Recommendation

In real-world recommender systems, thousands of new users and items are in-
troduced constantly, as well as new ratings for the existing users and items.
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Thus, recommender systems must have an online component which updates the
model and computes recommendations using the newest data.

There are two types of updates that are usually executed when new data
becomes available. A periodic rebuild, which takes place on a daily or weekly
basis, retrains the model based on all available data. Conversely, a continuous
online update computes the recommendations incrementally without retraining
the model. Koren [63] and Aizenberg et al. [3] present a way of computing
this continuous online update for new users, by employing a model which does
not parameterize users. Thus, the model can handle new users as soon as they
provide feedback to the system.

When new items are introduced into the system, the basic neighborhood-
based or latent factor based approaches can not be applied to compute per-
sonalized recommendations, because there are no prior preferences associated
with those items. This is known as the cold-start recommendation problem.
To solve this problem, cold-start recommender systems take the characteristics
of the items being recommended into account in addition to the prior pref-
erences of the users. Regression-based latent factor models (RLFM) [2] is a
general technique that can also work in item cold-start scenarios. AFM [39]
learns item attributes to latent feature mapping by learning a factorization
of the rating matrix into user and item latent factors. User-specific Feature-
based Similarity Models (UFSM) [34] learn a personalized linear combination
of user-independent similarity functions known as global similarity functions for
cold-start top-N item recommendations. Similar to UFSM, Sharma et al [90] de-
veloped the Feature-based factorized Bilinear Similarity Model (FBSM), which
learns a bilinear similarity function to capture pairwise dependencies between
the features for cold-start top-n item recommendations.

6 Conclusion

We presented an overview of recommender systems in the era of Big Data, fo-
cusing on two specific challenges: how to scale up finding nearest neighbors
and how to scale latent factor recommendation methods. For each category
of methods, we presented both serial and parallel advances in obtaining effi-
cient and effective solutions. Most existing recommendation methods assume
all ratings are given as input and do not change. An important future direction
for recommender systems in Big Data is developing parallel methods that can
efficiently update recommendation models or provide online recommendations
without loss of quality.
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rithms for tensor completion in the cp format. Parallel Computing, 2015.
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