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I. INTRODUCTION

The proliferation of documents, on both the Web and in

private systems, makes knowledge discovery in document

collections arduous. Clustering has been long recognized as

a useful tool for the task. It groups like-items together,

maximizing intra-cluster similarity and inter-cluster distance.

Clustering can provide insight into the make-up of a document

collection and is often used as the initial step in data analysis.

While most document clustering research to date has fo-

cused on moderate length single topic documents, real-life

collections are often made up of very short or long documents.

Short documents do not contain enough text to accurately

compute similarities. Long documents often span multiple

topics that general document similarity measures do not take

into account. In this paper we will first give an overview of

general purpose document clustering, and then focus on recent

advancements in the next frontier in document clustering: long

and short documents.

Note: This work is to appear as a a book chapter in [8].

II. MODELING A DOCUMENT

Unlike the traditional clustering task, document cluster-

ing faces several additional challenges. Corpora are high-

dimensional with respect to words, yet documents are sparse,

of varying length, and can contain correlated terms [3]. Find-

ing a document model, a set of features that can be used to

discriminate between documents, is key to the clustering task.

The clustering algorithm and the measure used to compute

similarity between documents is highly dependent on the

chosen document model.

A. Preliminaries

For the problem of document clustering, we are given a

collection of documents, or texts, D = {d1, . . . , dN}, called

a corpus. The set of words V = {w1, . . . , wM} represents

the vocabulary of D. Each document d ∈ D is a sequence of

nd words. We denote the term vector of a document by d.

At times, we may consider d as being made up of contiguous,

non-overlapping chunks of text, called segments, which in turn

are composed of sentences and words. A set of segments, S , is

called a segment-set. We denote with Sd the set of segment-

sets from a document d and with S =
⋃

d∈D Sd the set of

segment-sets from all the documents in D. The result of a

document clustering is a set C = {C1, . . . ,CK} of clusters.

Table I reports on main notations used throughout this paper.

TABLE I
MAIN NOTATIONS USED IN THIS PAPER

Symbol Description Symbol Description

D collection of documents N number of documents
D document-term matrix S number of segments
d,d document, document vector M number of terms
s segment α,θ word-topic proportions
S segment-set µ document-topic proportions
S collection of segment-sets β word probabilities
Sd set of segment-sets in d δ, η distribution parameters
C document clustering solution z word-topic assignments
C document cluster y document-topic assignments
K number of clusters w observed words

Probabilistic generative algorithms (cf. Section III-D) learn

a lower dimension (latent) feature space model that associates

hidden topics (unobserved class variables) with word occur-

rences (observed data). The following notation applies to this

class of algorithms. Documents are represented as sequences

(rather than sets) of words, di = (w1, . . . , wndi
). Words in

a document are represented as unit-basis vectors, where wl

is a vector of size M with wu
l = 1 and wv

l = 0 for all

indexes u 6= v. If the document is segmented, its segments are

also considered sequences of words. However, a document

can be either a sequence or a set of segments. Each zk

topic in Z = {z1, . . . , zK}, the set of latent topics, is a

distribution over the vocabulary. Topic proportions, e.g., α

and θ, are distributions over topics specifying the percentage

of the document or segment that could be drawn from each

topic. Topic assignments z and y tell which topic was selected

as source for choosing a term or document respectively.
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�
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�

(a) (b)

Fig. 1. Example notations for a graphical model. The plate notation in (b)
provides a more compact notation for the same model represented in (a).

We use plate notation, a standard representation for proba-

bilistic generative models, to depict graphically the intricacies

of some models. Plate notation should help the reader compare
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and contrast the presented models. In this notation, rectangles

(plates) represent repeated areas of the model. The number in

the lower right corner of the plate denotes the number of times

the included variables are repeated. Shaded and un-shaded

variables indicate observed and unobserved (latent) variables

respectively. In Figure 1, (a) and (b) both represent the same

model in which M words are sampled from a distribution β.

The depiction in (b) is more compact due to the use of plate

notation.

B. The Vector Space Model

Most current document clustering methods choose to view

text as a bag of words. Each document is considered to be a

vector in the term-space, represented in its simplest form by

the term-frequency (TF) vector

dtf = (tf
1
, tf

2
, . . . , tf M ),

where tf i is the frequency of the ith term in the document.

This gives the model its name, the vector space model (VSM).

A widely used refinement to the vector space model is to

weight each term based on its inverse document frequency

(IDF) in the document collection. The motivation behind

this weighting is that terms appearing frequently in many

documents have limited discrimination power and thus need to

be de-emphasized. This is commonly done [96] by multiplying

the frequency of the ith term by log(N/df i), where df i
is the number of documents that contain the ith term (i.e.,

document frequency). This leads to the tf-idf representation

of the document,

dtf-idf = (tf-idf
1
, tf-idf

2
, . . . , tf-idfM ).

Finally, to account for documents of different lengths, the

length of each document vector is normalized to unit length

(‖dtf-idf‖ = 1), that is, each document is a vector in the unit

hypersphere.

To maximize term co-occurrence in text, words can be

reduced to a base form, through either stemming or lemma-

tization. Stemming [90] is a fast heuristic process that works

on individual words, removing derivational affixes and in

general cutting off the word ending in hopes of matching

bases with other forms of the same word. Lemmatization uses

dictionaries and morphological analysis, aiming to return the

root of the word [78]. It analyzes words in context and is

more computationally demanding than stemming. Synonyms

of a word can also be replaced by a common form using lexical

databases [54]. Some attempts have been made to capture word

order and sentence structure in the vector space model by

encoding text as word or character n-grams (sequences of two

or more items) [22], [80].

Similarity in vector space. The cosine similarity is the most

used measure to compute similarity between two documents

in the vector space. Given vectors d1 and d2, it is defined as

cos(d1,d2) =
d1 · d2

||d1|| × ||d2||
,

where “·” represents the vector dot product operation. This

formula can be simplified to cos(d1,d2) = d1 ·d2 for vectors

of unit length.

Let D be the N×M document-term matrix, whose rows are

the document term frequency vectors. The pairwise similarities

of all documents in the collection can be computed directly

from D as

SIM = L
−1/2

XL
−1/2,

where X = DD
T and L is an N ×N diagonal matrix whose

diagonal elements are the diagonal elements of X. The left

and right multiplication of X by L
−1/2 scales the documents

to unit length. The formula reduces to SIM = DD
T if the

document vectors are already unit length.

Other popular measures for comparing documents include

the Euclidean, Manhattan, and Chebyshev distances, and the

Jaccard coefficient similarity. The Euclidean distance, also

known as the ℓ2 norm, is simply the geometric distance in

the M -dimensional space of the vectors, defined by

dist2(d1,d2) =

√

√

√

√

M
∑

i=1

(di
1
− di

2
)2,

where di
1

is the i-th element in the d1 document vector.

The Manhattan (also known as the city-block distance or the

ℓ1 norm) and the Chebyshev (also known as the chessboard

distance or the ℓ∞ norm) distances are similarly defined:

dist1(d1,d2) =
M
∑

i=1

|di
1
− di

2
|

dist∞(d1,d2) =
M

max
i=1

|di
1
− di

2
|

The Jaccard coefficient is a set similarity metric. It can be

applied to a feature vector by considering its nonzero elements

as set members. Using this logic, the Jaccard coefficient

measures commonality, represented by the intersection of the

two documents normalized by their union:

J(D1,D2) =
|D1 ∩D2|

|D1 ∪D2|
,

where D1 and D2 are set representations of d1 and d2

respectively.

C. Alternate document models

Some document models have been proposed to overcome

VSM limitations. Wang et al. [117] represent documents

as word dependency graphs and compare them using graph

similarity measures. The Matrix Space Model (MSM) [117]

considers each document to be a set of segments, represented

by a term-segment matrix. Concept-based models augment

the original term vector by adding or replacing terms with

some term category information, such as WordNet concepts

[54], synsets [6], part-of-speech tags and hypernyms [99], or

Wikipedia-based concepts [39].

Some models build corpus representations that allow com-

puting semantic similarity between documents. The Gen-

eralized Vector Space Model (GVSM) [119] addresses the
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pairwise orthogonality assumption in the vector space model.

It represents document vectors in terms of a suitably chosen

set of orthonormal basic term vectors, allowing computation of

term correlations. Latent Semantic Analysis (LSA) [27] finds

a low-rank approximation of the term-document matrix, which

effectively merges, in the latent space, dimensions associated

with terms that have similar meanings.

Topic models describe a simple probabilistic process by

which items can be generated in a collection. In this frame-

work, documents are represented as mixtures of topics, in

effect probability mass functions (pmfs) defined over a lower-

dimensional feature space representing topics. Topic models

can describe words, segments, or documents, and are the basis

for many generative algorithms discussed later in the paper.

D. Dimensionality reduction for text

The number of unique terms in text corpora is often very

high. Dimensionality reduction techniques aim to alleviate

this problem by decreasing noise in the term space. This

can be done by feature selection, which aims to choose an

optimal subset of features given some objective function,

or feature transformation, which seeks a lower-dimensional

space mapping of the original feature space. The simplest

selection technique prunes features with low or high document

frequency. Frequently occurring terms are deemed uninfor-

mative, while rare terms constitute noise. Stop words, which

are lexicon specific frequent terms, are also removed. These

simple selection techniques were found in some cases to be as

effective as more complicated supervised methods that select

features based on information gain (IG), mutual information

(MI), or χ2 (Chi-Square) analysis [121].

Feature transformation algorithms project the data to some

lower dimensional space. Principal Component Analysis

(PCA) [53], [60] is the dominant unsupervised approach. It

diagonalizes the covariance matrix CD = 1

N−1
DD

T into
1

N−1
(PD)(PD)T , and removes lesser principal components,

i.e. reduces P, to size K × N , where K < N . Here, P

is the matrix of principal components, whose rows are the

eigenvectors of DD
T .

A related approach, Latent Semantic Analysis (LSA) [27],

performs a singular-value decomposition of the document term

matrix, D = UΣV
T , and keeps latent space representations

of the document vectors associated with the first K singular

values (largest eigenvalues). In the supervised domain, Linear

Discriminant Analysis [38], [79] aims to find a latent space

in which documents from different classes are well separated,

by maximizing the Fisher criterion,

W = argmax
W

|WT
SbW|

|WTSwW|
,

Sb =
∑

c∈C

nc(µc − µ)(µc − µ)T ,

Sw =
∑

c∈C

∑

j:Yj=c

(dj − µc)(dj − µc)
T ,

where Sb and Sw are the between-class and within-class

scatter matrices. Here, C is the set of class labels, µ is the

collection mean, µc is the mean of documents in class c, nc

is the number of documents in class c, and Yj is the label

assigned to document j. The most discriminative projections

are the eigenvectors associated with the largest eigenvalues of

S
−1

w Sb.

A number of non-linear [12], [45], [106] and approxi-

mate [97], [73] extensions address the problems of non-

linearly separable data and high computational complexity

in the previous algorithms. While shown initially to be less

effective than other methods [37], algorithms based on random

projections are actively being investigated due to their lower

computational complexity [4].

Feature transformation techniques have also been used for

feature selection. Lu at al. choose a subset of features by

analyzing principal components [76]. Hardin at al. compare

SVM and Markov-Blanket based feature selection [47]. In

the supervised domain, Yan at al. use the Orthogonal Cen-

troid (OC) subspace learning algorithm to achieve optimal

feature selection. As a way to bridge the gap between the

two dimensionality reduction techniques, Yan at al. proposed

TOFA [120], an optimization framework for both feature

selection and feature transformation algorithms. Dy and Brod-

ley [35], Vinay et al. [112], Aldo and Verleysen [70], and

Cunningham [26] survey different aspects of dimensionality

reduction. Additionally, Alelyani et al. [5] provides an in-depth

discussion on feature selection.

E. Characterizing extremes

As the two extremes of text data representations, long and

short documents have additional characteristics that can impact

how they are processed in information retrieval and data man-

agement tasks. For example, short texts often lack context, can

have multiple interpretations, and use imprecise or incorrect

language. Long documents are often domain specific and

address multiple subjects. Linguistic characteristics include the

size of the text and the type of language used to express ideas.

Topical characteristics focus on the communicative function

and targets of the documents. More specifically, we identify

the following characterizing attributes:

• Noise, which is related to the use of informal language.

Noisy texts are usually rich in contracted forms of words,

colloquialisms, emotional punctuation and graphics, and

frequently occurring typos.

• Amount of context-shared information, which is related

to the sparseness of the text representation.

• Community-focus, which is regarded as the extent to

which the contents of a document are of interest to

a specific group of users (e.g., neighbors in a social

network, or a research community, etc.).

• Domain-specificity, which expresses the degree of align-

ment of the document vocabulary to a lexicon that is

specific to a certain subject domain.

Note that the amount of noise and context-shared information

are regarded as linguistic characteristics, whereas the remain-

ing ones fall into the topical category.
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Fig. 2. Comparison of example short and long documents: (a) linguistic and
(b) topical characteristics. Thicker (resp. thinner) ovals correspond to examples
of long (resp. short) documents.

Figures 2 (a) and (b) graphically compare short and long

documents under the above listed attributes. We have taken

two of the most representative examples for each type of

documents: Web pages and scientific articles as long docu-

ments, and microblogs, like tweets and search result snippets,

as short documents. Increasing positions along each of the axes

correspond to an increasing impact of a certain characteristic.

As represented in the graphs, tweets generally feature high

noise, low amount of context-shared information, high degree

of community focus, low/mid domain-specificity; by contrast,

scientific documents are usually less noisy and sparse, but

more domain-specific.

III. GENERAL PURPOSE DOCUMENT CLUSTERING

Most documents have moderate length, often address a

single topic, and use nondescript language. Examples include

Web pages, emails, encyclopedia articles, and newspaper

articles. These documents have been the focus of the data

mining community for many years. As a result, most docu-

ment clustering algorithms to date pertain to clustering these

standard document collections. In the following, we will give

an overview of the most prominent of these algorithms.

A. Similarity/dissimilarity based algorithms

Traditionally, documents are grouped based on how similar

they are to other documents. Similarity based algorithms define

a function for computing document similarity and use it as the

basis for assigning documents to clusters. Each group (cluster)

should have documents that are similar to each other and

dissimilar to documents in other clusters.

Clustering algorithms fall into different categories based on

the underlying methodology of the algorithm (agglomerative

or partitional), the structure of the final solution (flat or

hierarchical), or the multiplicity of cluster membership (hard

or soft, overlapping, fuzzy). Agglomerative algorithms find the

clusters by initially assigning each object to its own cluster

and then repeatedly merging pairs of clusters until a certain

stopping criterion is met. A number of different methods have

been proposed for determining the next pair of clusters to

be merged, such as group average (UPGMA) [57], single-

link [102], complete link [66], CURE [43], ROCK [44],

and CHAMELEON [63]. Hierarchical algorithms produce a

clustering that forms a dendrogram, with a single all inclusive

cluster at the top and single-point clusters at the leaves. On the

other hand, partitional algorithms, such as k-Means [77], k-

Medoids [57], [64], graph partitioning based [122], [57], [105],

and spectral partitioning based [17], [31], find the clusters

by partitioning the entire dataset into either a predetermined

or an automatically derived number of clusters. Depending

on the particular algorithm, a k-way clustering solution can

be obtained either directly, or via a sequence of repeated

bisections.

The Spherical k-Means algorithm (Sk-Means) [57] is used

extensively for document clustering due to its low computa-

tional and memory requirements and its ability to find high-

quality solutions. A spherical variant of the “fuzzy” version of

k-Means, called Fuzzy Spherical k-Means (FSk-Means) [128],

[68], produces an overlapping clustering by using a matrix of

degrees of membership of objects with respect to clusters, and

a real value f > 1. The latter is usually called the “fuzzyfier,”

or fuzzyness coefficient, and controls the “softness” of the

clustering solution. Higher f values lead to harder clustering

solutions.

In recent years, various researchers have recognized that

partitional clustering algorithms are well-suited for clustering

large document datasets due to their relatively low computa-

tional requirements [1], [104]. A key characteristic of many

partitional clustering algorithms is that they use a global cri-

terion function whose optimization drives the entire clustering

process1. The criterion function is implicit for some of these

algorithms (e.g., PDDP [17]), whereas for others (e.g., k-

Means) the criterion function is explicit and can be easily

stated. This later class of algorithms can be thought of as

consisting of two key components. The first is the criterion

function that needs to be optimized by the clustering solution,

and the second is the actual algorithm that achieves this

optimization. These two components are largely independent

of each other.

Table II lists some of the most widely-used criterion func-

tions for document clustering. Zhao and Karypis analyze

these criterion functions in both the hard and soft cluster-

ing scenarios and provide insights into their relative perfor-

mance [126], [127], [128]. Various clustering algorithms and

criterion functions described in this section are part of the

CLUTO [62] clustering toolkit, which is available online at

http://www.cs.umn.edu/∼cluto.

1Global clustering criterion functions are an inherent feature of partitional
clustering algorithms, but they can also be used in the context of agglomerative
algorithms.
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Criterion Function Optimization Function

I∞ maximize

K
∑

i=1

1

ni





∑

v,u∈Si

sim(v,u)



 (1)

I∈ maximize

K
∑

i=1

√

∑

v,u∈Si

sim(v,u) (2)

E∞ minimize

K
∑

i=1

ni

∑

v∈Si,u∈S
sim(v,u)

√

∑

v,u∈Si
sim(v,u)

(3)

G∞ minimize

K
∑

i=1

∑

v∈Si,u∈S
sim(v,u)

∑

v,u∈Si
sim(v,u)

(4)

G∈ minimize

K
∑

r=1

cut(V r,V − V r)

W (V r)
(5)

H∞ maximize
I∞

E∞
(6)

H∈ maximize
I∈

E∞
(7)

TABLE II
THE MATHEMATICAL DEFINITION OF VARIOUS CLUSTERING CRITERION

FUNCTIONS. THE NOTATION IN THESE EQUATIONS ARE AS FOLLOWS: K IS

THE TOTAL NUMBER OF CLUSTERS, S IS THE TOTAL SET OF OBJECTS TO

BE CLUSTERED, Si IS THE SET OF OBJECTS ASSIGNED TO THE iTH

CLUSTER, ni IS THE NUMBER OF OBJECTS IN THE iTH CLUSTER, v AND u
REPRESENT TWO OBJECTS, AND SIM(v,u) IS THE SIMILARITY BETWEEN

TWO OBJECTS.

B. Density based algorithms

In contrast to similarity based algorithms that often optimize

a global clustering criterion function, density-based clustering

algorithms focus on the local picture. DBSCAN [36] and

OPTICS [10], typical density-based clustering algorithms,

are designed to discover clusters of arbitrary shape in the

presence of noise, and have been shown effective for some

text datasets. Users do not need to know the number of

clusters in advance, but have to provide other parameters

that are sometimes hard to identify, e.g., a density threshold

and the radius of a neighborhood in the case of DBSCAN.

Additionally, the indexing techniques the algorithms use for

efficient neighborhood inquiry do not scale well to high-

dimensional feature spaces.

C. Adjacency based algorithms

The document-term matrix naturally represents the adja-

cency between documents and words in a collection and can

be interpreted as a graph. Spectral clustering finds cuts within

the induced document-term matrix graph that produce optimal

clusters. Zha et al. [125] partition the graph by minimizing

a normalized sum of edge weights between unmatched vertex

pairs in the graph. Their Spectral Recursive Embedding (SRE)

algorithm provides an approximate solution to the problem by

computing a partial singular value decomposition of a scaled

document-term frequency matrix. Liu and Han [72] provide

an in-depth discussion on spectral clustering.

The optimal solution to the graph partitioning problem is

NP-complete. Relaxations of this problem often lead to a gen-

eralized eigenvalue problem, which makes spectral clustering

algorithms only suitable for small datasets with limited feature

vectors. Ding et al. [32] introduce the Mcut algorithm, which

solves a relaxed version of the optimization of the min-max cut

objective function. They show that it produces more balanced

partitions than other cuts, including the normalized cut.

Similar documents are often defined by a shared vocabulary.

It stands to reason that finding word clusters in a collection

can lead to identifying document clusters, and vice-versa. Co-

clustering, also known as biclustering, tries to find blocks of

related words and documents in the text domain, i.e. related

rows and columns in the document-term matrix. Dhillon et

al. [30] take an information-theoretic approach to solving the

problem. In their solution, the optimal co-clustering maxi-

mizes the mutual information between document and term

random variables, where the document-term matrix represents

an empirical joint probability distribution of the two random

variables. Equivalently, the optimal co-clustering minimizes

the mutual information loss between the original random

variables and the clustered random variables. Dhillon et al.

formulate the problem as optimizing this loss function. At each

iteration, the algorithm re-computes row cluster prototypes

by using column clustering information and column cluster

prototypes by using row clustering information. They show

that the algorithm monotonically decreases the given objective

function and is thus guaranteed to reach a local minimum in

a finite number of steps.

Co-clustering can also be solved via graph-theoretic ap-

proaches. Rege et al. [94] propose the Isoperimetric Co-

clustering Algorithm (ICA) which partitions the bipartite graph

formed by documents and terms. It does so by heuristically

minimizing the ratio of the partition perimeter and area,

given an appropriate definition of graph-theoretic area. The

advantage of ICA over classic spectral clustering approaches

is that SVD is replaced with a solution to a system of

linear equations, which is generally computationally less ex-

pensive. Gu and Zhou [42] propose a Dual Regularized Co-

Clustering (DRCC) method based on semi-nonnegative matrix

tri-factorization. Considering both documents and terms to be

discrete samplings from separate manifolds, they construct two

graphs that allow them to explore the geometric structure of

the two manifolds. They ensure that both documents and terms

are smooth with respect to their individual manifolds via regu-

larizing the two graphs, enabling DRCC to utilize the encoded

geometric information. The partitioning is then accomplished

via semi-nonnegative matrix tri-factorization with two graph

regularizers.

D. Generative algorithms

While previous methods focus on the current picture of data,

generative algorithms try to find how the documents arrived

at their current state. Documents are made up of words that

must be connected in certain patterns to form comprehensible

language. If the generative models, the language factories,

of documents could be identified, documents issued from the

same models would use similar language and thus be consid-

ered similar. Generative algorithms assume documents can be
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represented as a mixture of probability distributions over the

collection set of terms [51], [110], [18], [16], [129], [65]. For

example, Probabilistic Latent Semantic Analysis (PLSA) [51],

[50], a probabilistic extension of the dimensionality reduction

approach based on LSA [27] (cf. Section II-D), defines a

statistical model in which the conditional probability between

documents and terms is modeled as a latent variable. An

unobserved class variable is assigned to each observation (e.g.,

the occurrence of a term in a given document), since each

document is created by a mixture of distributions.

K

N
M

wz
�
�

�
�

�
�

�
� 

Fig. 3. Plate notation for the LDA generative model.

Latent Dirichlet Allocation (LDA) [16] considers mixture

models that express the so-called “exchangeability” of both

terms and documents. In LDA, the generative process consists

of three levels that involve the whole corpus, the documents,

and the terms of each document. The algorithm first samples,

for each document, a distribution over collection topics from

a Dirichlet distribution. It then selects a single topic for each

of a document’s terms according to this distribution. Finally,

each term is then sampled from a multinomial distribution

over terms specific to the sampled topic. In this way, LDA

defines a more sophisticated generative model for a docu-

ment collection, whereas PLSA generates a model for each

individual document. The complete LDA generation process,

shown graphically through plate notation (cf. Section II-A) in

Figure 3, is detailed below.

1. For each topic, generate a multinomial distribution over

terms, βk ∼ DirM (η), k ∈ {1, . . . ,K}
2. For each document di, i ∈ {1, . . . , N}

a. Generate a multinomial distribution over topics, θi ∼
DirK(α)

b. For each word wil in document di

i. Choose a topic zil from the distribution in step a.,

i.e. zil ∼ Multi(θi)

ii. Choose word wil from topic zil, i.e. wil ∼
Multi(βzil

)

Many extensions to the initial probabilistic clustering al-

gorithms have been developed. Chemudugunta et al. [23]

propose a model that combines topic-level and word-level

modeling of documents. To address the uncorrelated words

assumption made by LDA, Wallach [113] generates a bigram

topic model that incorporates a notion of word order. Bayesian

nonparametric topic models [109], [15] find the number of

topics exhibited in the collection as part of the inference,

rather than requiring the user to provide it. Rosen-Zvi et

al. [95] use a two-stage stochastic process to model the author-

topic relationship. Blei [14] provides a general overview of

and several future research directions for probabilistic topic

models. Deng and Han [29] provide a more in-depth look at

probabilistic models for clustering.

Similarity in probabilistic space. Since generative models

represent documents as probability distributions, a number of

information theoretic distance metrics have been proposed for

comparing two such documents. Let X be a discrete random

variable defined on a sample space X = {x1, . . . , xR}, xr ∈
R, ∀r ∈ [1..R] and two pmfs p = {p1, . . . , pR}, q =
{q1, . . . , qR} for that variable. The Kullback-Leibler (KL)

divergence quantifies in bits the proximity of p to q.

KL(p, q) =

R
∑

i=1

pi log2
pi
qi

Its value is non-negative, not symmetric, and will equal zero

if the distributions match exactly. The Jensen-Shannon (JS)

divergence is a symmetrized and smoothed version of the KL

divergence, defined as

JS(p, q) =
1

2
KL(p,

1

2
(p+ q)) +

1

2
KL(q,

1

2
(p+ q)).

The Hellinger distance is a metric directly derived from

the Bhattacharyya coefficient [61], which offers an impor-

tant geometric interpretation in that it represents the cosine

between any two vectors that are composed by the square

root of the probabilities of their mixtures. Formally, the

Hellinger distance is defined as HL(p, q) =
√

1−BC(p, q),

where BC(p, q) =
∑R

i=1

√

p(xi) q(xi) is the Bhattacharyya

coefficient for the two pmfs p and q.

IV. CLUSTERING long documents

Long documents often discuss multiple subjects. This

presents added challenge to general purpose document cluster-

ing algorithms that tend to associate a document with a single

topic. The key idea to solving this problem is to consider

the document as being made up of smaller topically cohesive

text blocks, named segments. Segments can be identified

independent of or concurrent to the clustering procedure.

A. Document segmentation

Text segmentation is concerned with the fragmentation of

input text into smaller units (e.g., paragraphs) each possibly

discussing a single main topic. Regardless of the presence

of logical structure clues in the document, linguistic criteria

and statistical similarity measures have been mainly used

to identify thematically-coherent, contiguous text blocks in

unstructured documents [48], [13], [24].

The TextTiling algorithm [48] is the exemplary similarity

block based method for text segmentation. TextTiling is able to

subdivide a text into multi-paragraph, contiguous and disjoint

blocks that represent passages, or subtopics. More precisely,

TextTiling detects subtopic boundaries by analyzing patterns
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of lexical co-occurrence and distribution in the text. Terms that

discuss a subtopic tend to co-occur locally. A switch to a new

subtopic is detected when the co-occurrence of a given set

of terms ends and the co-occurrence of another set of terms

starts. All pairs of adjacent text blocks are compared using

the cosine similarity measure and the resulting sequence of

similarity values is examined in order to detect the boundaries

between coherent segments.

Recent segmentation techniques have taken advantage of

advances in generative topic modeling algorithms, which were

specifically designed to identify topics within text. Brants et

al. [18] use PLSA to compute word-topic distributions, fold

in those distributions at the block level (in their case blocks

are sentences), and then select segmentation points based on

the similarity values of adjacent block pairs. Sun et al. [107]

use LDA on a corpus of segments, compute intra-segment

similarities via a Fisher kernel, and optimize segmentation via

dynamic programming. Misra et al. [81] learn a document-

level LDA model, treat segments as new documents and

predict their LDA models, and then perform segmentation via

dynamic programming with probabilistic scores.

Modeling segmentation. The Segmented Topic Model

(STM) [33] assumes that each segmented document has a

certain mixture of latent topics and each segment within the

document also has a mixture over the same latent topics as

the documents. The shared latent topic pool provides a way

to correlate documents and segments.

The basic idea of the LDA model is that documents can be

represented as random mixtures over topics, depicted by word-

topic proportions θ, where topics are distributions over words.

The dimensionality K of the topic space (and thus of the

Dirichlet distribution from which topics are drawn) is assumed

known. The parameter β is treated as a K×M random matrix,

where each row θk is drawn from an exchangeable Dirichlet

distribution and is associated with one mixture component.

This view of β is shared by STM and all other LDA-based

models.

STM extends the LDA model by adding an additional

layer in deriving word-topic proportions θ, which effectively

correlates document topics with segment topics, modeling the

topic structure within a segmented document. While LDA

samples θ at the document level (θi ∼ DirK(α)), STM

extends document-level proportions (µi) to the segment-level

(θij) with the aid of the two-parameter Poisson-Dirichlet

Process (PDP). Du et al. posit the following approximations

on distributions, which enables this extension,

PDP (0, b, discrete(θ)) ≈ Dir(bθ),

PDP (a, 0, discrete(θ)) ≈ Dir(aθ),

where a and b are PDP discount and strength parameters and

a → 0. They justify the first approximation because the means

and the first two central moments of the LHS and RHS are

equal, and the second approximation based on an agreement

up to O(a2) error in the means and first two central moments
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Fig. 4. Plate notation for the STM (a) and LDSeq (b) generative models.

of the two sides. Since PDP is a prior conjugate to multinomial

likelihoods, replacing the Dirichlet distribution with the PDP

allows the authors to use collapsed Gibbs samplers in the STM

inference, greatly reducing computational complexity. Figure 4

(a) depicts the plate notation representation of the STM model,

whose generation process for each document is detailed below.

1. Generate document topic proportions, µi ∼ DirK(δ)
2. For each segment sij in document di

a. Generate segment topic proportions, θij ∼
PDP (a, b,µi)

b. For each word wijl in segment sij

i. Choose a topic zijl ∼ MultiK(θij)
ii. Choose word wijl ∼ MultiM (βzijl

)

STM is also similar to LDCC, a four-level probabilistic

model that also considers documents and segments as mixtures

over latent topics. Unlike STM, LDCC considers documents

and segments as random mixtures over different kinds of topics

and associates a segment with a single topic. By using a single

topic pool for both documents and segments, STM better

models the structure of a normal document, in which document

topics are a superset of the segment topics in the document.

Similarly, segments can at times exhibit multiple topics, e.g.,

a paragraph about Ludwig van Beethoven’s Violin Concerto

in D major can draw from topics related to violins, music,
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musical performance, and the life of Beethoven. By assuming

segments have a topic distribution, STM allows them to share

multiple topics. In contrast, LDCC assigns a specific topic

to each segment. LDCC will be presented in more detail in

Section IV-C.

Consecutive segments. Du et al. also propose Sequential LDA

(LDSeq) [34], an extension of STM that addresses the bag of

segments document assumption. Considering segment order in

a document, the topic distribution of a segment in LDSeq is

dependent on that of the previous segment. The first segment,

which does not have an antecedent, has a topic distribution

dependent on the document topic distribution. Figure 4 (b)

depicts the plate notation representation of the LDSeq model,

whose generation process for each document is detailed below.

1. Generate document topic proportions, θi,0 = µi ∼
DirK(δ)

2. For each segment sij in document di

a. Generate segment topic proportions, θij ∼
PDP (a, b,θi,j−1)

b. For each word wijl in segment sij
i. Choose a topic zijl ∼ MultiK(θij)

ii. Choose word wijl ∼ MultiM (βzijl
)

While documents are segment sets in STM, LDSeq sees

them as sequences of segments. Du et al. take advantage

of the fact that the PDP is self-conjugate, allowing them to

model progressive topical dependency via a nested PDP, i.e.,

the PDP of the current segment uses the PDP of the previous

segment as its base distribution (θij ∼ PDP (a, b,θi,j−1)).
This assumption may not be appropriate for all text domains,

but showcases, once again, the modularity and extensibility of

the LDA model. LDSeq is also related to the LDSEG model,

an extension of LDCC model that assumes a Markovian

relationship between distributions of consecutive segments.

LDSEG will be presented in more detail in Section IV-C.

B. Clustering segmented documents

Using techniques outlined above, a multi-topic document

can be decomposed into segments that correspond to the-

matically coherent contiguous text passages in the original

document. Segmentation can be used as a base step in long

document clustering.

Segment-based document clustering. Tagarelli and

Karypis [108] propose a framework for clustering of

multi-topic documents that leverages the natural composition

of documents into text segments in a “divide-et-impera”

fashion. First, the documents are segmented using an existing

document segmentation technique (e.g., TextTiling). Then,

the segments in each document are clustered (potentially

in an overlapping fashion) into groups, each referred to as

a segment-set. Each segment-set contains the thematically

coherent segments that may exist at different parts of the

document. Thinking of them as mini-documents, the segment-

sets across the different documents are clustered together into

non-overlapping thematically coherent groups. Finally, the

segment-set clustering is used to derive a clustering solution

of the original documents. The key assumption underlying

this segment-based document clustering framework is that

multi-topic documents can be decomposed into smaller

single-topic text units (segment-sets) and that the clustering

of these segment-sets can lead to an overlapping clustering

solution of the original documents that accurately reflects the

multiplicity of the topics that they contain.

Although parametric with respect to the clustering algo-

rithm, the framework is designed to work with “hard” as

well as “soft” clustering strategies; in particular, the authors

test their framework using existing algorithms for clustering

the segments within each document. For disjoint clustering

solutions they use Spherical k-Means (Sk-Means), whereas

for overlapping clustering solutions they use Fuzzy Spherical

k-Means (FSk-Means) and LDA (cf. Section III for details).

The authors also show that over-clustering the segments,

producing a relatively high degree overlapping clustering of

the segments, can circumvent the problem of identifying the

correct number of segment clusters, which is necessary input

for most partitioning clustering algorithms.

Once the within-document clustering has been performed

on all the documents in the collection, the resulting set S

of segment-sets becomes the input to the subsequent phase,

which is designed to identify the document topics in the

collection. The authors use a bisecting version of the Spherical

k-Means algorithm to cluster the segments. The use of disjoint

clustering is motivated by the fact that each of the segment-

sets will describe a single topic from the original document.

Tagarelli and Karypis devise a model akin to the vector

space model (cf. Section II-B) for representing a collec-

tion of segment-sets. Intuitively, they adapt the conventional

tf-idf function to be segment-set-oriented, segment-oriented, or

document-oriented. Similar to tf-idf, their weighting functions

increase with the term frequency within the local text unit

(segment), and with the term rarity across the whole collection

of text objects (i.e., segments, segment-sets, or documents).

Let w be an index term and S ∈ S be a segment-set.

Let tf (w,S) be the number of occurrences of w over all the

segments in S . The segment-set-oriented relevance weight of

w with respect to S is computed by the Segment-set Term

Frequency–Inverse Segment-set Frequency function:

stf-issf(w,S) = tf (w,S)× log

(

NS

NS(w)

)

,

where NS is the number of segment-sets in S, and NS(w) is

the part of NS that contains w.

At a higher level (i.e., at document level), the relevance

weight of w with respect to S is computed by the Segment-set

Term Frequency–Inverse Document Frequency function:

stf-idf(w,S) = tf (w,S)× log

(

ND

ND(w)

)

,

where ND is the number of documents in D, and ND(w) is

the part of ND that contains w.

8



Finally, at a lower level (i.e., at segment level), the relevance

weight of w with respect to S is computed by the Segment-set

Term Frequency–Inverse Segment Frequency function:

stf-isf(w,S)= tf (w,S)× exp

(

NS(w)

NS

)

× log

(

nS

nS(w)

)

,

where NS is the number of segments in S , nS is the number of

segments in S, and NS(w) and nS(w) are the portions of NS

and nS, respectively, that contain w. In the above formula, an

exponential factor is used to emphasize the segment-frequency

of the terms within the local segment-set. The rationale here

is that terms occurring in many segments of a segment-set

should be recognized as characteristic (discriminatory) of that

segment-set, thus they should be weighted more than terms

with low segment-frequency.

The final step in the framework is to use the disjoint

clustering solution of the segment-sets in order to derive an

overlapping solution of the initial document collection that

correctly reflects the multiple topics that may exist in the

collection’s documents. Although alternative methods could

be used to induce the final clustering, the authors take a

simple assignment approach. Each cluster of segment-sets is

considered to be a single topic, and each document is assigned

to all the topics that contain at least one of its segment-sets.

The empirical evaluation Tagarelli and Karypis performed

shows general improved clustering accuracy over non-

segmented document clustering techniques in both the soft and

hard clustering strategies. The segment-based views over the

documents allow for an effective identification of overlapping

clustering solutions, and the authors’ proposed segment-level

over-clustering improves the quality of both disjoint and over-

lapping clustering solutions. They also find that segment-based

document clustering leads to cluster descriptions that are more

“useful” according to a number of aspects, including higher

coherence of terms within a description, higher presence of

discriminating terms, and wider coverage of topics.

Clustering long legal documents. Lu et al. [75] apply a

similar clustering strategy in the legal domain, where docu-

ments with multiple topics are very common. They develop a

highly scalable soft clustering system centered around a topic

segmentation-based clustering framework that also incorpo-

rates metadata information. The process of identifying highly

refined issue-based clusters is broken down into three logical

steps: (1) build a universe of legal issues (topics) to search

in, (2) identify relevant documents for each issue in the topic

universe, and (3) associate each document in the collection

with one or more issues.

The document segmentation step leverages available meta-

data for the document collection. In particular, the algorithm

represents a headnote, a brief summary of points of law within

a document, as a compound vector with four different feature

types: a term frequency vector for the text in the headnote,

a frequency vector of noun phrases in the text, a vector of

codes for applicable laws from a legal taxonomy, known as

key numbers, and a citation network for the headnote. The

similarity between two headnotes is then computed as the

weighted sum of their respective feature type similarities, with

heuristically determined weights. The usual cosine similarity

with tf-idf weighting is used for comparing the first two feature

types, and an analogous method is used for the third. Citation

features are compared in terms of co-citations,

cite sim(hi, hj) =
cite(hi ∩ hj)

cite(hi ∪ hj)
,

where cite(hi∪hj) is the number of documents citing at least

one headnote, and cite(hi ∩ hj) is the number of documents

in which both headnotes hi and hj are cited. The use of noun

phrases as part of the feature set is motivated by an in-house

study that found them to be closely related to legal concepts,

which form the basis for topics in this domain.

Headnotes in each document are clustered using an agglom-

erative clustering algorithm employing an automatic stopping

criteria. The algorithm merges two clusters by maximizing the

ratio of intra-cluster and inter-cluster similarity, dubbed the

intra-topic similarity threshold, and thus does not require the

number of clusters as input. The intra-topic similarity threshold

is determined heuristically. The resulting headnote clusters are

considered topics within the document.

Given the large size of the topic set, the authors use dimen-

sionality reduction on topics to reduce the computational com-

plexity of the next step. To obtain a unique set of collection

topics, document topics are clustered using a “canopy” based

soft clustering technique. A document classification engine

and a ranker support vector machine (SVM) [25] is used to

retrieve topics similar to some seed topics, the top ranked of

which are merged with the seeds. Topic similarity is extended

for this step in the framework to include classification engine

scores and co-click similarity, a score based on users viewing

(clicking on) the documents that the headnotes represent. The

algorithm is executed recursively, using the output of each

round after the first execution as the input of the next, until

the inter-cluster similarity between any two clusters is lower

than a threshold. The resulting clustering represents the set of

most important topics within the collection.

The last step in the framework associates the collection

documents with the discovered topics. For this step, the main

document text is segmented and documents are assigned to

clusters based on the similarity of their segments with the

cluster. The quality of the resulting issue-based clustering was

validated by human legal experts in multiple test categories.

A statistical model. Clustering segmented documents is not

limited to VSM techniques. Ponti et al. [89] describe a statis-

tical model for topically segmented documents and provide a

clustering strategy for documents modeled this way. The key

idea of their work is that a generative model that exploits the

underlying composition of documents into segments is able

to better capture dependencies among terms, alleviating some

of the problems related to the bag-of-words assumption in

large multi-topic documents. Term generation in such a model

should be related not only to topics but also to segments. As

a consequence, the latent variable that models topics should
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be directly associated to the within-document segments, rather

than to the document as a whole. They propose Segment-based

Generative Model (SGM), a model that explicitly considers

segments within each document by introducing a segment

model variable in the generative process.

N
Sn

M
ws d z 

Fig. 5. Plate notation for the SGM generative model.

SGM assumes that each document d ∈ D is a sequence

of nd words and, at the same time, a set Sd of contiguous,

non-overlapping text blocks, or segments. The segmentation

strategy is decoupled from SGM, the authors using TextTiling

in their implementation. SGM utilizes latent variable z to

model topic distributions and the model variable s to represent

document segments. Figure 5 illustrates the graphical model

representation of SGM. The generative process performed

by SGM on a corpus D of segmented documents can be

summarized as follows:

1. Select a document d from D ⇒ Pr(d)

2. For each segment s ∈ Sd

a. Choose a topic z for the document, d ⇒ Pr(z|d)
b. Associate topic-to-segment probability for segment s,

z ⇒ Pr(s|z)

c. For each word w in the segment s

i. Choose a word w from the current topic and

segment, w ⇒ Pr(w|z, s)

SGM provides a finer-grained document-to-topic modeling

by taking into account text segments. Choosing a topic (

Pr(z|d) ) in the generative process is based on the topic-

to-segment association probability ( Pr(s|z) ), intuitively

providing a topical affinity for each segment given a selected

topic. Words are then generated not only by topics, but also

by segments ( Pr(w|z, s) ). The above generative process can

be translated into a joint probability model for triadic data,

in which each observation is expressed by a triad defined on

documents, segments, and words:

Pr(d, s, w) = Pr(d)
∑

z∈z

Pr(z|d) Pr(s|z) Pr(w|z, s).

Ponti et al. use Expectation-Maximization (EM) [28] to

estimate model parameters and a centroid based linkage ag-

glomerative hierarchical method for clustering the resulting

document pmfs. The prototype PC of each cluster is repre-

sented as the mean of the pmfs of the documents within that

cluster. The cluster merging criterion, which decides the pair

of clusters to be merged at each step, utilizes the Hellinger

distance (cf. Section III-D) to compare the cluster prototypes.

The merging score criterion computes the average distance

between the prototypes of each pair of clusters (PCi
and PCj

)

and the prototype of the union cluster (PCi∪Cj
). The pair

of clusters with the minimum score is chosen to be merged.

Intuitively, this criterion aims to choose the merged clustering

that is closest to the original clustering. The algorithm stops

when the cluster hierarchy is completed, or the desired number

of clusters is reached.

Extending the vector space. Wang et al. propose the Matrix

Space Model (MSM) [115], in which each pre-segmented

document is represented as a tf-idf -weighted term-segment

frequency matrix instead of a term frequency vector. Segments

are then cast as probabilistic distributions over a small set of l
latent topics, which are used to realize a document clustering.

Latent topic extraction is accomplished by approximating the

document matrices Ai as LMiR
T , where the non-negative

basis-matrices L ∈ R
m×l1(L ≥ 0) and R ∈ R

s×l2(R ≥ 0)
jointly define the lower dimensional space, and matrices Mi

are the low rank representation of the documents. l1 and l2 are

user specified parameters defining the size of the latent space,

m is the size of the term vocabulary, and s is the number of

segments a document is split into.

Given that matrices L and R are shared among the collec-

tion, the authors expect similar documents in the original space

to also have a similar latent space representation. They formu-

late the latent space extraction as the constrained optimization

problem,

min
L ∈ R

m×l1 : L ≥ 0
R ∈ R

s×l2 : R ≥ 0
Mi ∈ R

l1×l2 : Mi ≥ 0

n
∑

i=1

||Ai − LMiR
T ||2F ,

where ||·||F is the standard Frobenius matrix norm and n is the

number of collection documents. In the reconstruction, LMi

is associated with the posterior of each term belonging to the

latent topics, while MiR
T is the posterior of each segment in

the document belonging to the latent topics.

C. Simultaneous segment identification and clustering

Assuming the previous definition of segments as topically

coherent blocks of text in a document, segment identification

boils down to finding the document topics. The document

segments can then be extracted by considering the major

topic shifts in the document word list. Considering cluster

assignment, the result of topic modeling can be written as a

document-topic probability matrix P where, Pik = Pr(zk|di).
A hard (or soft) k-way clustering on documents could be

induced from P by assigning documents to the topic cluster(s)

for which their respective probability values are highest (or

above a threshold).

Co-clustering in the latent space. The above assignment

strategy assumes an order-dependent word assignment in the

topic model, which is not generally the case, as most models

assume documents are orderless bags of words. One of the
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first models to address order placement within the document,

Latent Dirichlet Co-Clustering (LDCC) [100], is an extension

of LDA that simultaneously clusters words and documents.

By focusing on meaningful segments of text, LDCC is more

likely to assign adjacent words to coherent topics.
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Fig. 6. Plate notation for the LDCC (a) and LDSEG (b) generative models.

LDCC extends LDA by assuming each document is a

random mixture of topics, which in turn are distributions over

segments. Segments are then modeled as in LDA: for each

segment, a distribution over collection topics is sampled from

a Dirichlet distribution; a topic is then selected according to

this distribution for each segment term; each term is finally

sampled from a multinomial distribution over terms specific

to the selected topic. Figure 6 (a) depicts the plate notation

representation of the LDCC model, whose generation process

for each document is detailed below.

1. Choose the number of segments for document di, Si ∼
Poisson(φ)

2. Generate document topic proportions, µi ∼ DirK(δ)

3. For each sij of the Si segments in document di
a. Choose a random topic for the segment, yij ∼

Multi(µi)
b. Choose number of words for the segment, Nij ∼

Poisson(ǫ)
c. Generate segment topic proportions, θij ∼

DirK(α, yij)
d. For each wijl in segment sij

i. Choose a topic zijl ∼ MultiK(θij)
ii. Choose word wnsm from Pr(wijl|zijl,β)

Accounting for segment correlation. LDCC intuitively as-

sumes that documents are composed of single-topic segments.

Yet consecutive segments often pertain to the same subject,

in the same way that paragraphs in a chapter may cover

different aspects of the same topic discussed therein. In their

follow-up paper [101], Shafiei and Milios extend LDCC to

also identify topically coherent segments in text. The proposed

model, LDSEG, assumes a high likelihood that a segment has

the same distribution over words as the previous segment in

the document and models this assumption through a Markov

structure on the segment-topic distribution. A switching binary

variable for the topic of each segment indicates whether its

topic is the same as that of the previous segment. If it is not,

a new topic is sampled for the current segment. The list of

states for this switching variable also defines a segmentation

in each document. Figure 6 (b) depicts the plate notation

representation of the LDSEG model, whose generation process

for each document is detailed below.

1. Choose the number of segments for document di, Si ∼
Poisson(φ)

2. Generate document topic proportions, µi ∼ DirK(δ)
3. For each segment sij in document di

a. Choose yij = yij−1 with probability Pr(cij = 1) = π
b. Otherwise, choose a random topic for the segment,

yij ∼ Multi(µi)
c. Choose number of words for the segment, Nij ∼

Poisson(ǫ)
d. Generate segment topic proportions, θij ∼

DirK(α, yij)
e. For each wijl in segment sij

i. Choose a topic zijl ∼ MultiK(θij)
ii. Choose word wnsm from Pr(wijl|zijl,β)

A framework for generative clustering. Ponti and Tagarelli

relax the segment topic coherence assumption and provide a

topic-based framework for clustering multi-topic documents

using generative models [88]. Instead of assigning documents

to topic clusters, Ponti and Tagarelli cluster documents based

on their topic distributions. The proposed framework executes

three steps. First, the documents are processed using standard

preprocessing techniques to obtain the document term matrix.

Then, a generative model is applied to represent the documents

in a topic latent space. The output of this step is a probability

matrix expressing the topic mixture underlying the documents.

In the final step, documents are clustered based on their topic

mixtures, using an information theory pmf distance metric to

compare documents. The clustering algorithm is a centroid-

based linkage agglomerative hierarchical algorithm, like the

one used by Ponti et al. in [89], which was described earlier.

V. CLUSTERING short documents

Clustering short documents faces additional challenges

above those of general purpose document clustering. Short

documents normally address a single topic, yet they may do

so with completely orthogonal vocabulary. Noise, contracted

forms of words, and slang are prevalent in short texts. In this

section, we will first discuss general methods for clustering
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short documents and then focus on methods designed specifi-

cally for clustering Web documents and microblogs.

A. General methods for short document clustering

There has been a relatively large corpus of study on al-

ternative approaches to the clustering of short texts. Wang

et al. [116] propose a frequent-term based parallel clustering

algorithm specifically designed to handle large collections of

short texts. The algorithm involves an information-inference

mechanism to build a semantic text feature graph which is used

by a k-NN-like classification method to control the degree of

cluster overlapping. Pinto et al. [86] resort to the information-

theory field and define a symmetric KL divergence to compare

short documents for clustering purposes. Since the KL distance

computation relies on the estimation of probabilities using

term occurrence frequencies, a special type of back-off scheme

is introduced to avoid the issue of zero probability due to the

sparsity of text. Carullo et al. [21] describe an incremental on-

line clustering algorithm that utilizes a generalized Dice coeffi-

cient as a document similarity measure. The algorithm requires

two thresholds as input, one to control the minimum accepted

similarity that any document must have to be assigned to a

cluster, and the other to define the maximum similarity of a

document that can still contribute to the definition of a cluster.

Particle-swarm optimization techniques and bio-inspired

clustering algorithms have also been proposed for short text

data. Ingaramo et al. [56] develop a partitional clustering

algorithm to handle short texts of arbitrary size. The key aspect

of that study is the adaptation of the AntTree algorithm [46],

which integrates the “attraction of a cluster” and the Silhouette

Coefficient concepts, to detecting clusters. Each ant represents

a single data object as it moves in the clustering structure

according to its similarity to other ants already connected to

the tree under construction. Starting from an artificial support,

all the ants are incrementally connected, either to that support

or to other already connected ants. This process continues

until all ants are connected to the structure, i.e., all objects

are clustered.

Finding core terms. In [83], Ni et al. regard the short doc-

ument clustering task of grouping short texts based on some

selected “core” terms. The underlying idea is to recursively

bisect one of the clusters according to the core term identified

within that cluster. The core term of a cluster is the term

that minimizes the value of the Ratio Min-Max Cut (RMcut)

criterion over all possible bisections of that cluster. Following

a strategy dubbed TermCut, a bisection of a specific cluster

is obtained for each of the terms contained within the cluster.

All documents containing the selected term are assigned to

one subcluster and the rest of the documents (not containing

the term) are assigned to the other.

To find its RMcut value, an input collection of short

documents is modeled as a graph, where vertices represent

documents and edges are weighted by the similarity between

the adjoined documents. As is generally done for short docu-

ments, term frequencies are smoothed to be one or zero, and

thus the document representation is simplified to be a vector

of idf values. The RMcut value corresponding to a K-way

clustering C of D is defined as

RMcut(C) =

K
∑

k=1

cut(Ck, C −Ck)

|Ck|
∑

di,dj∈Ck
sim(di,dj)

.

The denominator part of the above formula takes into account

both the intra-similarity of each cluster and its size, where

the latter is used to avoid producing very unbalanced clusters.

Moreover, the edge-cut function cut(·, ·) acts as an inter-

cluster similarity criterion; it is defined as the summation

over the weights of all edges connecting vertices (documents)

within a specified cluster to the vertices within the rest of the

clusters.

Taking into account cluster frequencies for terms, we can

observe that the sum of all pair-wise document similarities

within a cluster is equal to the sum of the product of the

squared inverse document frequency and cluster frequency

over all terms in the cluster. Thus, the RMCut criterion can

be efficiently computed as

RMcut(C) =

K
∑

k=1

∑M
l=1

(idfl)
2 cfl,k cfl,¬k

|Ck|
∑M

l=1
(idfl cfl,k)2

,

where cfl,k and cfl,¬k denote the cluster frequency of the lth
term within the kth cluster and within the rest of the clusters,

respectively. Note that the overall complexity of the RMcut

criterion is O(N +M), since the inverse document frequency

and the cluster frequency of the terms can be computed by

a single scan of the documents in the collection, and the

computation of the numerator and the denominator in the

above formula is O(M).
Following the TermCut strategy, Ni et al. propose two

algorithms. The first tries to bisect clusters until the desired

number of clusters is reached. The second takes a minimal

RMcut decrease threshold as input and, as the name suggests,

continues the bisecting process until the decrease in the RMcut

value falls below the given threshold. While the idea behind

the RMcut criterion is very similar to that underlying the

CLUTO criterion functions detailed in Equations 5 and 6 of

Table II, Ni et al. show that their bisecting strategy outperforms

CLUTO for a number of short text datasets.

B. Clustering with knowledge infusion

Motivated by the lack of common vocabulary in short

documents, many short document clustering algorithms first

enrich or complement the statistical vector representation

of short texts with external knowledge bases, like WordNet

or Wikipedia. Banerjee et al. [11] propose to enrich the

original term-feature space of search results with the titles

of the Wikipedia articles that are retrieved as relevant to

two queries created for each result. The first query is based

on the result title, while the other is based on the result

description, or snippet. Scaiella et al. [98] propose a “graph-

of-topics” model to represent each snippet, in which vertices

correspond to Wikipedia pages that are identified by existing
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topic annotators, and the edges are weighted to determine

the semantic relatedness between the linked topics. An on-

line spectral clustering algorithm is used on an induced graph

consisting of two types of vertices, topics and snippets, where

the weighted edges express either topic similarities or topic-

to-snippet memberships.

User actions have also been useful in identifying short

document clusters. Wang and Zhai [114] exploit information

contained in log data produced by a real search engine to

cluster search result snippets. Carpineto and Romano [20]

introduce a meta-clustering strategy that clusters snippets

by integrating partitions separately obtained as a result of

analyzing the tf-idf document-term matrix with SVD, NMF,

and generalized suffix trees. They also define an evaluation

measure that takes into account the behavior of Web users in

terms of the time spent to satisfy their search needs.

Hu et al. [55] combine original text features with semantic

features derived from external knowledge bases to support

the clustering task. Applying standard NLP techniques, they

model the short input text into a parsing-tree-like structure to

support the extraction of non-redundant seed phrases, which

they use in turn to generate external semantic features. More

specifically, a naive punctuation-based segmentation of the text

facilitates a subsequent shallow parsing step which identifies

seed phrases. To avoid redundancy, each phrase is compared

with all the other ones in the segment, and the phrase with the

highest Wikipedia-based similarity is removed. The remaining

seed phrases are used to retrieve external feature content, either

from Wikipedia or WordNet, depending on the presence of

stop words in the phrase. External features are extracted from

titles and link text in the Wikipedia pages, or similar term

concepts in WordNet. Document features are finally selected

based on tf-idf weights of original and external features. An

additional parameter is introduced to control the influence of

external features in the feature space. Hu et al. demonstrate

the concurrent use of multiple types of external knowledge

bases, along with internal semantics, to improve clustering of

short texts.

C. Clustering Web snippets

Document clustering research has traditionally focused on

Web documents as a way to facilitate users’ ability to quickly

browse search results. Web documents could be clustered off-

line, with a general purpose document clustering algorithm.

However, this approach was shown ineffective [41], [19],

because it is based on features that are frequent in the

entire collection but irrelevant to the particular query. Instead,

query-specific, on-line, post-retrieval clustering, i.e., clustering

search results, was shown to produce superior results [49]. A

search result is generally composed of a title and a snippet, a

short summary, often containing phrases from the document

related to the search query. As such, clustering search results

uses a subset of the collection vocabulary concentrated around

the query terms.

Unlike the traditional clustering task, the primary focus

of search result clustering is not to produce optimal clus-

ters [114], [19], [7]. Rather, search result clustering is a highly

user-centric task with several unique additional requirements.

The algorithm must be fast, as users are unwilling to wait

longer than a few seconds for search results. Clusters must

exhibit interesting query sub-topics or facets from the user’s

perspective. Finally, clusters must be assigned informative,

expressive, meaningful and concise labels.

Scatter/Gather [87], [49] was an early cluster-based docu-

ment browsing method that addressed the speed requirement

by performing post-retrieval clustering on top-ranked docu-

ments returned from a traditional information retrieval system.

Zamir and Etzioni introduced the well-known Suffix Tree

Clustering (STC) [123] algorithm, which creates interesting

sub-topic clusters based on phrases shared between documents.

It follows the assumption that repeated phrases imply topics

of interest within the result collection. STC treats a snippet as

a string of words, builds a suffix tree over the collection of

snippets, and traverses the suffix tree to extract base clusters.

The algorithm then uses a binary similarity measure based on

overlap of documents to create a base cluster graph. In this

graph, each node corresponds to a group of snippets sharing

a phrase. The final clustering solution is obtained by finding

the connected components in the graph. Zamir and Etzioni

also showed that using snippets for clustering is as effective

as using whole documents.

Addressing the meaningful and concise label requirement

of search result clustering, Anastasiu et al. [7] employ a

strategy that generates labels before clusters. They first identify

frequent phrases within a set of search results using a suffix

tree built in linear time by Ukkonen’s algorithm [111]. Then

they select labels from the frequent phrases using a greedy set

cover heuristic, where at each step a frequent phrase covering

the most uncovered search results is selected until the whole

cluster is covered or no frequent phrases remain. Results are

then assigned to a label if they contain the terms in the label,

uncovered results being placed in a special cluster named

Other. Osiński et al. [84] also follow a label before cluster

approach. They use dimensionality reduction techniques to

induce cluster labels. Then, treating each label as a query over

the snippet-set in the information retrieval sense, they populate

the clusters with the retrieved results for the queries.

Common phrases can naturally describe clusters. This has

inspired many other phrase-based hierarchical methods for

clustering Web snippets. Kummamuru et al. [69] develop a

monothetic clustering algorithm with the ultimate goal of

automatically generating a concept hierarchy, where concepts

are terms or phrases. At each level of the hierarchy being

constructed, the algorithm progressively identifies topics such

that the distinctiveness of the monothetic features describing

the clusters is maximized, and at the same time document

coverage in clusters is maximized. Li and Wu [71] first build

a phrase-based document index by extracting salient phrases

from snippets. The clustering method starts with all extracted

phrases belonging to their individual clusters and combines

the most similar clusters according to the constructed index.

Each cluster is finally identified by a distinct phrase. The
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snippets whose indexing phrases belong to the same cluster are

grouped together, while the remaining snippets are clustered

based on their k-nearest neighbors. Zeng et al. [124] map the

clustering problem to a phrase ranking problem, in which a

regression model is first trained to rank the n-grams for a

specified keyword. The model is then used to extract relevant

phrases according to which the snippets are finally clustered.

D. Clustering microblogs

The recent popularity of social networks has led to increas-

ing demand for robust clustering algorithms for microblog

data, or tweets. General purpose document clustering algo-

rithms do not work well with these data due to the lack

of co-occurring terms and context information in the short

“documents”. Researchers have tried to solve this problem by

altering existing techniques or creating specialized document

models. The most promising research direction relies on align-

ing or augmenting the short texts with external information.

Liu et al. [74] rely on an incremental similarity-threshold

based clustering step to identify groups of similar tweets

for the task of semantic role labeling. In a related problem

of classifying tweets to a predefined set of generic classes,

Sriram et al. [103] compare the bag of words model with

other models based on short-text specific features such as

use of shortened words or slang, time-event phrases, opinion

phrases, or username mentions. In their evaluation, they find

that non-bag of words models outperform the bag of words

one. Park et al. [85] propose a hybrid approach that exploits

external information from search result clustering to deal with

the extraction of topics from blogs. A set of candidate terms

with relatively high tf-idf values is initially extracted from all

posts of a blog, and then used to feed a Web search engine. The

resulting snippets for a specified candidate term are grouped

into a hierarchy of clusters, and each of these clusters is

compared and matched to the blog posts covering that term

to finally determine how many subtopics are covered by the

blog.

Topic modeling has recently also been shown effective in the

microblog domain. Ramage et al. propose Labeled LDA [93],

a version of LDA that incorporates available supervision, and

use it on Tweeter data [92] to characterize content, rank tweets,

and recommend users to follow. Weng et al. [118] propose a

PageRank-type algorithm for measuring topic-sensitive influ-

ence of microblog authors. They use LDA to discover latent

topics and compute transition probabilities contingent on the

topical similarity of users. Hong and Davison [52] study how

to train topic models on microblog data to be used in standard

text mining applications. They find that model based features

can be very useful, but the length of the documents can greatly

affect the effectiveness of trained topic models. Specifically,

aggregating short messages leads to better models.

Aligning topics in short and long texts. Inspired by the idea

of using external data sources, Jin et al. [59] train topic models

on the short texts alongside a collection of auxiliary long texts.

They realize that long texts cannot be perfectly aligned to the

short. Thus, their Dual LDA (DLDA) algorithms distinguish

between inconsistent topical structures across domains by

correlating the simultaneous training of two LDA models, the

target model on the short texts and the auxiliary model on the

long ones.

Depending on how the two models are related to each

other, Jin et al. propose two algorithms. α-DLDA models two

separate sets of topics for auxiliary and target data and uses

asymmetric Dirichlet priors to control the relative importance

of the two when generating a document. αt, the Dirichlet prior

for generating topic mixing proportions for target documents,

is given higher values for entries associated with target topics.

Similarly, αa is given higher values for entries associated with

auxiliary topics. Figure 7 (a) illustrates the graphical model

representation of α-DLDA.
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Fig. 7. Plate notation for the α-DLDA (a) and γ-DLDA (b) generative models.

γ-DLDA introduces a document-dependent binary switch

that constrains each document to be either generated from

the target model or from the auxiliary one. In addition to the

multinomial distributions over topics, each document is also

associated with a binomial distribution over target or auxiliary

topics with a Beta prior γ. Similar to the α parameter in

α-DLDA, γt is given higher values for entries associated

with target topics, and vice-versa. Figure 7 (b) depicts the

plate notation representation of the γ-DLDA model, whose

generation process for each document is detailed below.

1. For each target topic, generate a multinomial distribution

over terms, βt
k ∼ DirM (ηt), k ∈ {1, . . . ,Kt}

2. For each auxiliary topic, generate a multinomial distribu-

tion over terms, βa
k ∼ DirM (ηa), k ∈ {1, . . . ,Ka}

3. For each corpus (auxiliary and target data), c ∈ {a, t}
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a. For each corpus document di, i ∈ {1, . . . , N c}

i. Generate a multinomial distribution over target

topics, θt
i ∼ DirK(αt)

ii. Generate a multinomial distribution over auxiliary

topics, θa
i ∼ DirK(αa)

iii. Generate a binomial distribution over target vs.

auxiliary topics, πi ∼ Beta(γc)

iv. For each word wil in document di

1) Choose a value for xil ∼ Binomial(πi)
2) If xil = t, choose a target topic zil ∼

Multi(θt
i)

3) If xil = a, choose an auxiliary topic zil ∼
Multi(θa

i )

4) Choose word wil from topic zil, i.e. wil ∼
Multi(βxil

zil
)

Jin et al. compare their DLDA algorithms against direct

clustering with CLUTO, topic model based clustering on the

individual collections, and several algorithms that transfer

knowledge from the long texts when clustering the short.

While α-DLDA and γ-DLDA outperformed the competition,

the authors also note that methods utilizing long texts per-

formed significantly better than the others, demonstrating the

value of external information when clustering noisy short

documents.

VI. CONCLUSION

This chapter primarily focused on reviewing some recently

developed text clustering methods that are specifically suited

for long and for short document collections. These types of

document collections introduce new sets of challenges. Long

document are by their nature multi-topic and as such the

underlying document clustering methods must explicitly focus

on modeling and/or accounting for these topics. On the other

hand, short documents often contain domain-specific vocabu-

lary, are very noisy, and their proper modeling/understanding

often requires the incorporation of external information. We

strongly believe research in clustering long and short doc-

uments is in its early stages and many new methods will

be developed in the years to come. Moreover, many real

datasets are not only composed of standard, long, or short

documents, but rather documents of mixed length. Current

scholarship lacks studies on these types of data. Since different

methods are often used for clustering standard, long, or short

documents, new methods or frameworks should be investigated

that address mixed collections.

Traditional document clustering is also faced with new

challenges. Today’s very large, high-dimensional document

collections often lead to multiple valid clustering solutions.

Subspace/projective clustering approaches [67], [82] have

been used to cope with high dimensionality when perform-

ing the clustering task. Ensemble clustering [40] and multi-

view/alternative clustering approaches [58], [91], which aim

to summarize or detect different clustering solutions, have

been used to manage the availability of multiple, possibly

alternative clusterings for a given dataset. Relatively little work

has been done so far in document clustering research to take

advantage of lessons learned from these methods. Integrating

subspace/ensemble/multi-view clustering with topic models

or segmentation may lead to developing the next-generation

clustering methods specialized for the document domain.

Some topics that we have only briefly touched on in this

article are further detailed in other chapters of this book.

Other topics related to clustering documents, such as semi-

supervised clustering, stream document clustering, parallel

clustering algorithms, and kernel methods for dimensionality

reduction or clustering, were left for further study. Interested

readers may consult document clustering surveys by Aggarwal

and Zhai [3], Andrews and Fox [9], and Steinbach et al. [104].
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